88 resultados para Aemilia Lepida (0003 av. J.-C.-0053) -- Portraits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central nervous system (CNS) is the most cholesterol-rich organ in the body. Cholesterol is essential to CNS functions such as synaptogenesis and formation of myelin. Significant differences exist in cholesterol metabolism between the CNS and the peripheral organs. However, the regulation of cholesterol metabolism in the CNS is poorly understood compared to our knowledge of the regulation of cholesterol homeostasis in organs reached by cholesterol-carrying lipoprotein particles in the circulation. Defects in CNS cholesterol homeostasis have been linked to a variety of neurodegenerative diseases, including common diseases with complex pathogenetic mechanisms such as Alzheimer s disease. In spite of intense effort, the mechanisms which link disturbed cholesterol homeostasis to these diseases remain elusive. We used three inherited recessive neurodegenerative disorders as models in the studies included in this thesis: Niemann-Pick type C (NPC), infantile neuronal ceroid lipofuscinosis and cathepsin D deficiency. Of these three, NPC has previously been linked to disturbed intracellular cholesterol metabolism. Elucidating the mechanisms with which disturbances of cholesterol homeostasis link to neurodegeneration in recessive inherited disorders with known genetic lesions should shed light on how cholesterol is handled in the healthy CNS and help to understand how these and more complex diseases develop. In the first study we analyzed the synthesis of sterols and the assembly and secretion of lipoprotein particles in Npc1 deficient primary astrocytes. We found that both wild type and Npc1 deficient astrocytes retain significant amounts of desmosterol and other cholesterol precursor sterols as membrane constituents. No difference was observed in the synthesis of sterols and the secretion of newly synthesized sterols between Npc1 wild type, heterozygote or knockout astrocytes. We found that the incorporation of newly synthesized sterols into secreted lipoprotein particles was not inhibited by Npc1 mutation, and the lipoprotein particles were similar to those excreted by wild type astrocytes in shape and size. The bulk of cholesterol was found to be secreted independently of secreted NPC2. These observations demonstrate the ability of Npc1 deficient astrocytes to handle de novo sterols, and highlight the unique sterol composition in the developing brain. Infantile neuronal ceroid lipofuscinosis is caused by the deficiency of a functional Ppt1 enzyme in the cells. In the second study, global gene expression studies of approximately 14000 mouse genes showed significant changes in the expression of 135 genes in Ppt1 deficient neurons compared to wild type. Several genes encoding for enzymes of the mevalonate pathway of cholesterol biosynthesis showed increased expression. As predicted by the expression data, sterol biosynthesis was found to be upregulated in the knockout neurons. These data link Ppt1 deficiency to disturbed cholesterol metabolism in CNS neurons. In the third study we investigated the effect of cathepsin D deficiency on the structure of myelin and lipid homeostasis in the brain. Our proteomics data, immunohistochemistry and western blotting data showed altered levels of the myelin protein components myelin basic protein, proteolipid protein and 2 , 3 -cyclic nucleotide 3 phosphodiesterase in the brains of cathepsin D deficient mice. Electron microscopy revealed altered myelin structure in cathepsin D deficient brains. Additionally, plasmalogen-derived alkenyl chains and 20- and 24-carbon saturated and monounsaturated fatty acids typical for glycosphingolipids were found to be significantly reduced, but polyunsaturated species were significantly increased in the knockout brains, pointing to a decrease in white matter. The levels of ApoE and ABCA1 proteins linked to cholesterol efflux in the CNS were found to be altered in the brains of cathepsin D deficient mice, along with an accumulation of cholesteryl esters and a decrease in triglycerols. Together these data demonstrate altered myelin architecture in cathepsin D deficient mice and link cathepsin D deficiency to aberrant cholesterol metabolism and trafficking. Basic research into rare monogenic diseases sheds light on the underlying biological processes which are perturbed in these conditions and contributes to our understanding of the physiological function of healthy cells. Eventually, understanding gained from the study of disease models may contribute towards establishing treatment for these disorders and further our understanding of the pathogenesis of other, more complex and common diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probiooteilla kantakohtaisia vaikutuksia ihmisen immuunijärjestelmään terveillä aikuisilla Probiooteilla on kantakohtaisia tulehduksen välittäjäaineita vähentäviä vaikutuksia ja probioottien yhdistelmien vaikutukset eroavat yksittäisten kantojen vaikutuksista selviää TtM Riina Kekkosen tuoreesta väitöstutkimuksesta. TtM Riina Kekkonen on selvittänyt väitöskirjassaan eri probioottikantojen vaikutuksia immuunivasteeseen valkosolumallissa sekä terveillä aikuisilla lumekontrolloiduissa kliinisissä tutkimuksissa. Aikaisemmin probioottien vaikutuksia on tutkittu lähinnä allergian ja erilaisten vatsavaivojen ehkäisyssä ja hoidossa. Probiootteja sisältäviä tuotteita käyttävät kuluttajat ovat kuitenkin useimmiten terveitä aikuisia, ja probioottien vaikutus terveiden aikuisten immuunijärjestelmään on ollut puutteellisesti selvitettyä. Valkosolumallissa probioottikantojen havaittiin poikkeavan toisistaan niiden kyvyssä aktivoida immuunivasteen välittäjäaineiden, sytokiinien, tuotantoa. Anti-inflammatorisia, eli tulehdusta lievittäviä vaikutuksia nähtiin lähinnä Bifidobacterium ja Propionibacterium sukuihin kuuluvilla kannoilla. Streptococcus ja Leuconostoc sukuihin kuuluvat kannat puolestaan aktivoivat Th1 tyyppistä, soluvälitteistä immuunivastetta. Eri probioottien kombinaatiot eivät saaneet aikaan voimakkaampaa aktivaatiota yksittäisiin kantoihin verrattuna, joka viittaa probioottien keskinäiseen kilpailuun niiden ollessa kontaktissa ihmisen solujen kanssa. Probioottikantojen valinta kliinisiin tutkimuksiin tehtiin niiden anti-inflammatoristen ominaisuuksien perusteella. Parhaita anti-inflammatorisia kantoja olivat B. lactis ssp. animalis Bb12 ja P. freudenreichii ssp. shermanii JS, joiden lisäksi tutkimuksiin valittiin myös L. rhamnosus GG (LGG) hyvin tutkittuna referenssikantana. Solutöiden tulokset eivät olleet täysin verrannollisia kliinisen työn tuloksiin, koska LGG näytti omaavan parhaat anti-inflammatoriset ominaisuudet kliinisissä tutkimuksissa vaikka solutyössä sen aikaansaamat vasteet olivat melko vaimeita. Kolmen viikon kliinisessä tutkimuksessa terveillä aikuisilla LGG alensi mm. tulehdusta kuvaavan C-reaktiivisen proteiinin ja inflammatoristen sytokiinien määrää. Pidemmässä kolmen kuukauden pituisessa kliinisessä tutkimuksessa LGG:llä ei ollut vaikutusta terveiden aikuisten infektiosairastavuuteen, mutta LGG lyhensi vatsavaivojen kestoa. Probioottien vaikutukset immuunijärjestelmään näyttävät olevan kantakohtaisia ja erityisesti Lactobacillus rhamnosus GG:llä havaittiin anti-inflammatorisia vaikutuksia. Valkosolumallia ei tulisi käyttää ainoana probioottikantojen skriinausmenetelmänä niiden immunologisia vaikutuksia selvitettäessä, koska solutöiden tulokset eivät olleet täysin verrannollisia kliinisten tutkimusten tuloksiin. Sen sijaan veren perifeeristen lymfosyyttien eristäminen ja niiden aktivoitumisen selvittäminen lyhytaikaisessa kliinisessä tutkimuksessa voisi toimia suhteellisen helppona skiinausmenetelmänä.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) are a major cause of death and disability in Western countries and a growing health problem in the developing world. The genetic component of both coronary heart disease (CHD) and ischemic stroke events has been established in twin studies, and the traits predisposing to CVD, such as hypertension, dyslipidemias, obesity, diabetes, and smoking behavior, are all partly hereditary. Better understanding of the pathophysiology of CVD-related traits could help to target disease prevention and clinical treatment to individuals at an especially high disease risk and provide novel pharmaceutical interventions. This thesis aimed to clarify the genetic background of CVD at a population level using large Nordic population cohorts and a candidate gene approach. The first study concentrated on the allelic diversity of the thrombomodulin (THBD) gene in two Finnish cohorts, FINRISK-92 and FINRISK-97. The results from this study implied that THBD variants do not substantially contribute to CVD risk. In the second study, three other candidate genes were added to the analyses. The study investigated the epistatic effects of coagulation factor V (F5), intercellular adhesion molecule -1 (ICAM1), protein C (PROC), and THBD in the same FINRISK cohorts. The results were encouraging; we were able to identify several single SNPs and SNP combinations associating with CVD and mortality. Interestingly, THBD variants appeared in the associating SNP combinations despite the negative results from Study I, suggesting that THBD contributes to CVD through gene-gene interactions. In the third study, upstream transcription factor -1 (USF1) was analyzed in a cohort of Swedish men. USF1 was associated with metabolic syndrome, characterized by accumulation of different CVD risk factors. A putative protective and a putative risk variant were identified. A direct association with CVD was not observed. The longitudinal nature of the study also clarified the effect of USF1 variants on CVD risk factors followed in four examinations throughout adulthood. The three studies provided valuable information on the study of complex traits, highlighting the use of large study samples, the importance of replication, and the full coverage of the major allelic variants of the target genes to assure reliable findings. Although the genetic basis of coronary heart disease and ischemic stroke remains unknown, single genetic findings may facilitate the recognition of high-risk subgroups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cancer, a subpopulation of malignant cells expresses markers of normal stem cells. These cells have the potential of initiating tumor growth and therefore also tumor recurrence. Thus, these cells are called cancer stem cells. A myriad of markers have been applied to identify these cells, but no single marker can be found exclusively in cancer stem cells. In many types of cancer, clinical recurrence and tumor progression are the main causes of mortality, despite intense oncological treatment. It has been proposed that the presence of cancer stem cells causes this resistance to therapy. The scope of this thesis is to investigate the role of stem cell markers and genes in the clinical setting. Especially, the aim was to elucidate the clinical significance of stem cell markers as novel prognostic and diagnostic tools in cancer. Tumor biopsy material from central nervous system tumors (oligodendroglioma, astrocytoma and glioblatoma), neural crest derived tumors (pheochromocytomas) and oral carcinoma was screened for stem cell markers. Initially, 15 stem cell markers were screened in a test series of gliomas. The markers applied for expanded tumor analyses (in 305 cases of glioma, 42 cases of pheochromocytoma, and 73 cases of oral carcinoma) were BMI-1, Snail, p16, mdm2, and c-Myc. Data on marker expression was compared with clinical and pathological parameters. In gliomas, BMI-1 expression was found in nearly all tumors analyzed, but the frequency of BMI-1 expressing cells was highly variable, ranging from 1 to 100%. In oligodendroglioma, BMI-1 expression was identified as a prognostic marker independent of tumor grade and clinical parameters. In pheochromocytoma, Snail expression was shown to distinguish between the metastatic and non-metastatic forms of the tumor. Snail expression was seen only in metastatic tumors, whereas non-metastatic tumors did not commonly express Snail. Finally, in oral carcinoma, BMI-1 expression was seen in roughly 80% of tumors, and Snail expression was high or very high in all cases. The lack of BMI-1 expression was associated with early relapse in oral carcinoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antinociceptive properties of oxycodone and its metabolites were studied in models of thermal and mechanical nociception and in the spinal nerve ligation (SNL) model of neuropathic pain in rats. Oxycodone induced potent antinociception after subcutaneous (s.c.) administration in all models of nociception used in rats compared with morphine, methadone and its enantiomers. In the SNL model of neuropathic pain in rats, oxycodone produced dose dependent antinociception after s.c. administration. The antinociceptive effects of s.c. oxycodone were antagonized by naloxone but not by nor-binaltorphimine (Nor-BNI) a selective κ-opioid receptor antagonist indicating that the antinociceptive properties of oxycodone are predominantly μ-opioid receptor-mediated. The antinociceptive activity of oxymorphone, noroxycodone, and noroxymorphone, oxidative metabolites of oxycodone, were studied to determine their role in the oxycodone-induced antinociception in the rat. Of the metabolites of oxycodone s.c. administration of oxymorphone produced potent thermal and mechanical antinociception. Noroxycodone had a poor antinociceptive effect and noroxymorphone was inactive. Oxycodone produced naloxone-reversible antinociception after intrathecal (i.t) administration with a poor potency compared with morphine and oxymorphone. This seems to be related to the low efficacy and potency of oxycodone to stimulate μ-opioid receptor activation in the spinal cord in μ-opioid receptor agonist-stimulated (GTP)γ[S] autoradiography, compared with morphine and oxymorphone. All metabolites studied were more potent than oxycodone after i.t. administration. I.t. noroxymorphone induced a significantly longer lasting antinociceptive effect compared with the other drugs studied. The role of cytochrome P450 (CYP) 2D6-mediated metabolites on the analgesic activity of oxycodone in humans was studied by blocking the CYP2D6-mediated metabolism of oxycodone with paroxetine. Paroxetine co-administration had no effect on the analgesic effect of oxycodone compared with placebo in chronic pain patients, indicating that oxycodone-induced analgesia and adverse-effects are not dependent of the CYP2D6-mediated metabolism in humans. Although oxycodone has many pharmacologically active metabolites, they seem to have an insignificant role in oxycodone-induced antinociception in humans and rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important factors determining the development of atherosclerosis is the amount of LDL particles in the circulation. In general, LDL particles are clinically regarded as “bad cholesterol” since these particles get entrapped within the vascular wall, leading to atherosclerosis. Circulating HDL particles are conversely regarded as “good cholesterol” because of their ability to transport cholesterol from peripheral tissues to the liver for secretion as bile salts. Once inside the artery wall LDL particles are engulfed by macrophages, resulting in macrophage foam cells. If the macrophage foam cells are not able to efflux the cholesterol back into the bloodstream, the excessive cholesterol ultimately leads to cell death, and the deposition of cellular debris within the atherosclerotic lesion. The cells ability to secrete cholesterol is mainly dependent on the ABCA1 transporter (ATP-binding cassette transporter A1) which transfers cellular cholesterol to extracellular apoA-I (apolipoprotein A-I) particles, leading to the generation of nascent HDL particles. The process of atherosclerotic plaque development is therefore to a large extent a cellular one, in which the capacity of the macrophages in handling the excessive cholesterol load determines the progression of lesion development. In this work we have studied the cellular mechanisms that regulate the trafficking of LDL-derived cholesterol from endosomal compartments to other parts of the cell. As a basis for the study we have utilized cells from patients with Niemann-Pick type C disease, a genetic disorder resulting from mutations in the NPC1 and NPC2 genes. In these cells, cholesterol is entrapped within the endosomal compartment, and is not available for efflux. By identifying proteins that bypass the cholesterol trafficking defect, we were able to identify the small GTPase Rab8 as an important protein involved in ABCA1 dependent cholesterol efflux. In the study, we show that Rab8 regulates cholesterol efflux in human macrophages by facilitating intracellular cholesterol transport, as well as by regulating the plasma membrane availability of ABCA1. Collectively, these results give new insight in to atherosclerotic lesion development and intracellular cholesterol processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of corneal wounds requires both epithelial cell adhesion and migration. Basement membrane (BM) and extracellular matrix (ECM) proteins function in these processes via integrin and non-integrin receptors. We have studied the adhesion, spreading and migration of immortalized human corneal epithelial (HCE) cells and their interactions with the laminins (Lms), fibronectins and tenascins produced. Human corneal BM expresses Lms-332 and -511, while Lm-111 was not found in these experiments. HCE cells produced both processed and unprocessed Lm-332, whereas neither Lm-111 nor Lm-511 was produced. Because HCE cells did not produce Lm-511, although it was present in corneal BM, we suggest that Lm-511 is produced by stromal keratocytes. The adhesion of HCE cells to Lms-111, -332 and -511 was studied first by determining the receptor composition of HCE cells and then by using quantitative cell adhesion assays. Immunofluorescence studies revealed the presence of integrin α2, α3, α6, β1 and β4 subunits. Among the non-integrin receptors, Lutheran (Lu) was found on adhering HCE cells. The cells adhered via integrin α3β1 to both purified human Lms-332 and -511 as well as to endogenous Lm-332. However, only integrin β1 subunit functioned in HCE cell adhesion to mouse Lm-111. The adhesion of HCE cells to Lm-511 was also mediated by Lu. Since Lm-511 did not induce Lu into focal adhesions in HCE cells, we suggest that Lm-511 serves as an ECM ligand enabling cell motility. HCE cells produced extradomain-A fibronectin, oncofetal fibronectin and tenascin-C (Tn-C), which are also found during corneal wound healing. Monoclonal antibodies (MAbs) against integrins α5β1 and αvβ6 as well as the arginine-glycine-aspartic acid (RGD) peptide inhibited the adhesion of HCE cells to fibronectin. Although the cells did not adhere to Tn-C, they adhered to the fibronectin/Tn-C coat and were then more efficiently inhibited by the function-blocking MAbs and RGD peptide. During the early adhesion, HCE cells codeposited Lm-332 and the large subunit of tenascin-C (Tn-CL) beneath the cells via the Golgi apparatus and microtubules. Integrin β4 subunit, which is a hemidesmosomal component, did not mediate the early adhesion of HCE cells to Lm-332 or Lm-332/Tn-C. Based on these results, we suggest that the adhesion of HCE cells is initiated by Lm-332 and modulated by Tn-CL, as it has been reported to prevent the assembly of hemidesmosomes. Thereby, Tn-CL functions in the motility of HCE cells during wound healing. The different distribution of processed and unprocessed Lm-332 in adhering, spreading and migrating HCE cells suggests a distinct role for these isoforms. We conclude that the processed Lm-332 functions in cell adhesion, whereas the unprocessed Lm-332 participates in cell spreading and migration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nurr1, NGFI-B and Nor1 (NR4A2, NR4A1 and NR4A3, respectively) belong to the NR4A subfamily of nuclear receptors. The NR4A receptors are orphan nuclear receptors which means that activating or repressing ligands for these receptors have not been found. NR4A expression is rapidly induced in response to various stimuli including growth factors and the parathyroid hormone (PTH). The studies concerning the NR4A receptors in the central nervous system have demonstrated that they have a major role in the development and function of the dopaminergic neurons of the midbrain and in regulating hypothalamus-pituitary-adrenal-axis. However, the peripheral functions of the NR4A family are largely unknown. Cultured mouse primary osteoblasts, a preosteoblastic cell line and several osteoblastic cell lines were used to investigate the role of NR4A receptors in osteoblasts. NR4A receptors were shown to directly bind to and activate the promoter of the osteopontin gene (OPN) in osteoblastic cells, thus regulating its expression. OPN is a major bone matrix protein expressed throughout the differentiation of preosteoblastic cells into osteoblasts. The activation of the OPN promoter was shown to be dependent on the activation function-1 located in the N-terminal part of Nurr1 and to occur in both monomeric and RXR heterodimeric forms of NR4A receptors. Furthermore, PTH was shown to upregulate OPN expression through the NR4A family. It was also demonstrated that the fibroblast growth factor-8b (FGF-8b) induces the expression of NR4A receptors in osteoblasts as immediate early genes. This induction involved phosphatidylinositol-3 kinase, protein kinase C, and mitogen activated protein kinase, which are all major pathways of FGF signalling. Nurr1 and NGFI-B were shown to induce the proliferation of preosteoblastic cells and to reduce their apoptosis. FGF-8b was shown to stimulate the proliferation of osteoblastic cells through the NR4A receptors. These results suggest that NR4A receptors have a role both in the differentiation of osteoblasts and in the proliferation and apoptosis of preosteoblast. The NR4A receptors were found to bind to the same response element on OPN as the members of the NR3B family of orphan receptors do. Mutual repression was observed between the NR4A receptors and the NR3B receptors. This repression was shown to be dependent on the DNA-binding domains of both receptor families, but to result neither from the competition of DNA binding nor from the competition for coactivators. As the repression was dependent on the relative expression levels of the NR4As and NR3Bs, it seems likely that the ratio of the receptors mediates their activity on their response elements. Rapid induction of the NR4As in response to various stimuli and differential expression of the NR3Bs can effectively control the gene activation by the NR4A receptors. NR4A receptors can bind DNA as monomers, and Nurr1 and NGFI-B can form permissive heterodimers with the retinoid X receptor (RXR). Permissive heterodimers can be activated with RXR agonists, unlike non-permissive heterodimers, which are formed by RXR and retinoic acid receptor or thyroid hormone receptor (RAR and TR, respectively). Non-permissive heterodimers can only be activated by the agonists of the heterodimerizing partner. The mechanisms behind differential response to RXR agonists have remained unresolved. As there are no activating or repressing ligands for the NR4A receptors, it would be important to find out, how they are regulated. Permissiviness of Nurr1/RXR heterodimers was linked to the N-terminal part of Nurr1 ligand-binding domain. This region has previously been shown to mediate the interaction between NRs and corepressors. Non-permissive RAR and TR, permissive Nurr1 and NGFI-B, and RXR were overexpressed with corepressors silencing mediator for retinoic acid and thyroid hormone receptors (SMRT), and with nuclear receptor corepressor in several cell lines. Nurr1 and NGFI-B were found to be repressed by SMRT. The interaction of RXR heterodimers with corepressors was weak in permissive heterodimers and much stronger in non-permissive heterodimers. Non-permissive heterodimers also released corepressors only in response to the agonist of the heterodimeric partner of RXR. In the permissive Nurr1/RXR heterodimer, however, SMRT was released following the treatment with RXR agonists. Corepressor release in response to ligands was found to differentiate permissive heterodimers from non-permissive ones. Corepressors were thus connected to the regulation of NR4A functions. In summary, the studies presented here linked the NR4A family of orphan nuclear receptors to the regulation of osteoblasts. Nurr1 and NGFI-B were found to control the proliferation and apoptosis of preosteoblasts. The studies also demonstrated that cross-talk with the NR3B receptors controls the activity of these orphan receptors. The results clarified the mechanism of permissiviness of RXR-heterodimers. New information was obtained on the regulation and functions of NR4A receptors, for which the ligands are unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Varhaislapsuuden karies ja sen ehkäisy kehittyvän terveydenhuollon maassa Varhaislapsuuden karies on merkittävä kansanterveysongelma varsinkin lapsirikkaissa maissa ja väestöissä. Karieksen hoitaminen vie paljon voimavaroja ja aiheuttaa mittavia taloudellisia seuraamuksia. Karies voi ilmaantua lapselle jo vauvaikäisenä, pian ensimmäisten maitohampaiden puhjettua suuhun. Alle 3-vuotiaiden karieksesta on kuitenkin niukasti tilastotietoja. Maailman terveysjärjestökin suosittaa tietojen keräämistä vasta 3-vuotiaiden ikäryhmästä. Heistä kariesta sairastaa Suomessa 16 %, Yhdysvalloissa 25 %, Englannissa 30 %, Iranissa 46 % ja Saudi-Arabiassa 61 %. Tämä väitöstutkimus selvitti karieksen esiintymistä ja sen vaaratekijöitä 1─3-vuotiailla Teheranissa. Lisäksi tutkimus arvioi perusterveydenhuoltoon sisällytetyn karieksen ehkäisyn tuloksellisuutta. Tutkimuskohteiksi arvottiin Teheranista 18 neuvolaa. Jokaisessa oltiin 4 päivää, jolloin kaikkia rokotuksiin tulleita 1─3-vuotiaita äiteineen pyydettiin osallistumaan tutkimukseen. Kahta lukuun ottamatta kaikki äidit suostuivat, ja aineistoon tuli kaikkiaan 504 lasta äiteineen. Kaikki 1-vuotiaat, 242 lasta äiteineen, valittiin karieksen ehkäisykokeiluun. Sitä varten neuvolat jaettiin kolmeen ryhmään, joista kaksi (A ja B) oli koeryhmiä ja yksi (C) oli vertailuryhmä. Tutkimus alkoi äidin haastattelulla. Siinä selvitettiin perheen koulutus- ja tulotaso sekä lapsen ruokinnasta imetyksen kesto, yösyötöt ja päiväaikaan nautitut makeat. Vielä kysyttiin lapsen ja äidin suuhygieniatavoista ja äidin kokemuksista lapsen suun puhdistamisessa. Sitten hammaslääkäri tutki lapsen suun ja kirjasi karieksen ja hammasplakin esiintymät. Suun tutkimuksen jälkeen äiti ja lapsi siirtyivät rokotushuoneeseen. Koeryhmissä (A ja B) äidit saivat terveydenhoitajalta suunterveyttä koskevan esitteen ja kehotuksen lukea se huolellisesti. Lisäksi ryhmässä A terveydenhoitaja kertoi suun ja hampaiden terveydenhoidosta saman esitteen avulla, ja neuvolan henkilökunta muistutti suunhoidon tärkeydestä puhelimitse kahdesti seuraavan puolen vuoden kuluessa. Vertailuryhmässä äideille ei annettu suunhoidon ohjeita. Kaikissa ryhmissä äitejä muistutettiin seuraavan rokotuskerran ajankohdasta, muttei mainittu tulevaa toista hammastarkastusta. Varhaislapsuuden kariesta sairasti ikäryhmästä riippuen 3─26 % tutkituista 1─3-vuotiaista, ja 65─76 %:lla oli hammasplakkia. Äideistä 68 % harjasi hampaansa päivittäin ja 39 % puhdisti lapsensa suun päivittäin. Mitä useammin äiti harjasi omat hampaansa, sitä paremmin hän huolehti lapsen suun puhtaudesta. Rintaruokinta oli yleistä eikä lisännyt kariesvaaraa. Yöllä pullomaitoa saavilla karies oli 5 kertaa yleisempää kuin muilla. Neuvolassa saatu ohjeistus ehkäisi selvästi karieksen syntyä puolen vuoden kokeessa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinase (MMP) -8, collagenase-2, is a key mediator of irreversible tissue destruction in chronic periodontitis and detectable in gingival crevicular fluid (GCF). MMP-8 mostly originates from neutrophil leukocytes, the first line of defence cells which exist abundantly in GCF, especially in inflammation. MMP-8 is capable of degrading almost all extra-cellular matrix and basement membrane components and is especially efficient against type I collagen. Thus the expression of MMP-8 in GCF could be valuable in monitoring the activity of periodontitis and possibly offers a diagnostic means to predict progression of periodontitis. In this study the value of MMP-8 detection from GCF in monitoring of periodontal health and disease was evaluated with special reference to its ability to differentiate periodontal health and different disease states of the periodontium and to recognise the progression of periodontitis, i.e. active sites. For chair-side detection of MMP-8 from the GCF or peri-implant sulcus fluid (PISF) samples, a dip-stick test based on immunochromatography involving two monoclonal antibodies was developed. The immunoassay for the detection of MMP-8 from GCF was found to be more suitable for monitoring of periodontitis than detection of GCF elastase concentration or activity. Periodontally healthy subjects and individuals suffering of gingivitis or of periodontitis could be differentiated by means of GCF MMP-8 levels and dipstick testing when the positive threshold value of the MMP-8 chair-side test was set at 1000 µg/l. MMP-8 dipstick test results from periodontally healthy and from subjects with gingivitis were mainly negative while periodontitis patients sites with deep pockets ( 5 mm) and which were bleeding on probing were most often test positive. Periodontitis patients GCF MMP-8 levels decreased with hygiene phase periodontal treatment (scaling and root planing, SRP) and even reduced during the three month maintenance phase. A decrease in GCF MMP-8 levels could be monitored with the MMP-8 test. Agreement between the test stick and the quantitative assay was very good (κ = 0.81) and the test provided a baseline sensitivity of 0.83 and specificity of 0.96. During the 12-month longitudinal maintenance phase, periodontitis patients progressing sites (sites with an increase in attachment loss ≥ 2 mm during the maintenance phase) had elevated GCF MMP-8 levels compared with stable sites. General mean MMP-8 concentrations in smokers (S) sites were lower than in non-smokers (NS) sites but in progressing S and NS sites concentrations were at an equal level. Sites with exceptionally and repeatedly elevated MMP-8 concentrations during the maintenance phase were clustered in smoking patients with poor response to SRP (refractory patients). These sites especially were identified by the MMP-8 test. Subgingival plaque samples from periodontitis patients deep periodontal pockets were examined by polymerase chain reaction (PCR) to find out if periodontal lesions may serve as a niche for Chlamydia pneumoniae. Findings were compared with the clinical periodontal parameters and GCF MMP-8 levels to determine the correlation with periodontal status. Traces of C. pneumoniae were identified from one periodontitis patient s pooled subgingival plaque sample by means of PCR. After periodontal treatment (SRP) the sample was negative for C. pneumoniae. Clinical parameters or biomarkers (MMP-8) of the patient with the positive C. pneumoniae finding did not differ from other study patients. In this study it was concluded that MMP-8 concentrations in GCF of sites from periodontally healthy individuals, subjects with gingivitis or with periodontitis are at different levels. The cut-off value of the developed MMP-8 test is at an optimal level to differentiate between these conditions and can possibly be utilised in identification of individuals at the risk of the transition of gingivitis to periodontitis. In periodontitis patients, repeatedly elevated GCF MMP-8 concentrations may indicate sites at risk of progression of periodontitis as well as patients with poor response to conventional periodontal treatment (SRP). This can be monitored by MMP-8 testing. Despite the lower mean GCF MMP-8 concentrations in smokers, a fraction of smokers sites expressed very high MMP-8 concentrations together with enhanced periodontal activity and could be identified with MMP-8 specific chair-side test. Deep periodontal lesions may be niches for non-periodontopathogenic micro-organisms with systemic effects like C. pneumoniae and possibly play a role in the transmission from one subject to another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida yeast species are widespread opportunistic microbes, which are usually innocent opportunists unless the systemic or local defense system of the host becomes compromised. When they adhere on a fertile substrate such as moist and warm, protein-rich human mucosal membrane or biomaterial surface, they become activated and start to grow pseudo and real hyphae. Their growth is intricately guided by their ability to detect surface defects (providing secure hiding , thigmotropism) and nutrients (source of energy, chemotropism). The hypothesis of this work was that body mobilizes both non-specific and specific host defense against invading candidal cells and that these interactions involve resident epithelial cells, rapidly responding non-specific protector neutrophils and mast cells as well as the antigen presenting and responding den-dritic cell lymphocyte plasma cell system. It is supposed that Candida albicans, as a result of dar-winistic pressure, has developed or is utilizing strategies to evade these host defense reactions by e.g. adhering to biomaterial surfaces and biofilms. The aim of the study was to assess the host defense by taking such key molecules of the anti-candidal defense into focus, which are also more or less characteristic for the main cellular players in candida-host cell interactions. As a model for candidal-host interaction, sections of chronic hyperplastic candidosis were used and compared with sections of non-infected leukoplakia and healthy tissue. In this thesis work, neutrophil-derived anti-candidal α-defensin was found in the epithelium, not only diffusely all over in the epithelium, but as a strong α-defensin-rich superficial front probably able to slow down or prevent penetration of candida into the epithelium. Neutrophil represents the main host defence cell in the epithelium, to which it can rapidly transmigrate from the circulation and where it forms organized multicellular units known as microabscesses (study I). Neutrophil chemotactic inter-leukin-8 (IL-8) and its receptor (IL-8R) were studied and were surprisingly also found in the candidal cells, probably helping the candida to keep away from IL-8- and neutrophil-rich danger zones (study IV). Both leukocytes and resident epithelial cells contained TLR2, TLR4 and TLR6 receptors able to recognize candidal structures via utilization of receptors similar to the Toll of the banana fly. It seems that candida can avoid host defence via stimulation of the candida permissive TLR2 instead of the can-dida injurious TLR4 (study V). TLR also provides the danger signal to the immune system without which it will not be activated to specifically respond against candidal antigens. Indeed, diseased sites contained receptor activator of nuclear factor kappa B ligand (RANKL; II study), which is important for the antigen capturing, processing and presenting dendritic cells and for the T lymphocyte activation (study III). Chronic hyperplastic candidosis provides a disease model that is very useful to study local and sys-temic host factors, which under normal circumstances restrain C. albicans to a harmless commensal state, but failure of which in e.g. HIV infection, cancer and aging may lead to chronic infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular diseases, which presently are considered inflammatory diseases, affect millions of people worldwide. Chronic infections may contribute to the systemic inflammation suggested to increase the risk for cardiovascular diseases. Such chronic infections are periodontitis and Chlamydia pneumoniae infection. They are highly prevalent as approximately 10% of adult population and 30% of people over 50 years old are affected by severe periodontitis and 70-80% of elderly people are seropositive for C. pneumoniae. Our general aim was to investigate the role of infection and inflammation in atherosclerosis both in animal and human studies. We aimed to determine how the two pathogens alter the atherosclerosis-associated parameters, and how they affect the liver inflammation and lipid composition. Furthermore, we evaluated the association between matrix metalloproteinase-8 (MMP-8), a proteinase playing a major role in inflammation, and the future cardiovascular diseases (CVD) events in a population-based cohort. For the animal experiments, we used atherosclerosis-susceptible apolipoprotein E deficient (apoE-/-) mice. They were kept in germ free conditions and fed with a normal chow diet. The bacteria were administered either intravenously (A. actinomycetemcomitans) or intranasally (C. pneumoniae). Several factors were determined from serum as well as from aortic and hepatic tissues. We also determined how cholesterol efflux, a major event in the removal of excess cholesterol from the tissues, and endothelial function were affected by these pathogens. In the human study, serum MMP-8 and its tissue inhibitor (TIMP-1) concentrations were measured and their associations during the follow-up time of 10 years with CVD events were determined. An infection with A. actinomycetemcomitans increased concentrations of inflammatory mediators, MMP production, and cholesterol deposit in macrophages, decreased lipoprotein particle size, and induced liver inflammation. C. pneumoniae infection also elicited an inflammatory response and endothelial dysfunction, as well as induced liver inflammation, microvesicular appearance and altered fatty acid profile. In the population-based cohort, men with increased serum MMP-8 concentration together with subclinical atherosclerosis (carotid artery intima media thickness > 1mm) had a three-fold increased risk for CVD death during the follow-up. The results show that infections with A. actinomycetemcomitans and C. pneumoniae induce proatherogenic changes, as well as affect the liver. These data therefore support the concept that common infections have systemic effects and could be considered as cardiovascular risk factors. Furthermore, our data indicate that, as an independent predictor of fatal CVD event, serum MMP-8 could have a clinical significance in diagnosing cardiovascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis was to compare the degradation of human oral epithelial proteins by proteinases of different Candida yeast species. We focused on proteins associated with Candida invasion in the cell-to-cell junction, the basement membrane zone, the extracellular matrix, and local tissue inflammatory regulators. Another main objective was to evaluate the effect of the yeast/hyphal transition and pH on the degradative capability of Candida. The enzymatic activity of the Candida proteinases was verified by gelatin zymography. Laminins-332 (Lm-322) and -511(Lm-511) produced by human oral keratinocytes were gathered from the growth media, and E-cadherin (E-Cad) was isolated from the cell membrane of the keratinocytes by immunoprecipitation. The proteins were incubated with Candida cells and cell-free fractions, and degradation was detected by fluorography. Fibronectin degradation was visualised by sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Matrix metalloproteinase-9 (MMP-9) activation and tissue inhibitor of metalloproteinase-1 (TIMP-1) fragmentation was detected by using the Western blot and enhanced chemoluminescence (ECL) techniques. Residual activity of TIMP-1 was evaluated by a casein degradation assay. A fluorimetric assay was used to detect and compare Candida proteinase activities with MMP-9. These studies showed that the ability of the different Candida yeast species to degrade human Lm-332, fibronectin, and E-Cad vary from strain to strain and that this degradation is pH-dependent. This indicates that local acidic pH in tissue may play a role in tissue destruction by activating Candida proteinases and aid invasion of Candida into deeper tissue. A potential correlation exists between the morphological form of the yeasts and the degradative ability; the C. albicans yeast form seems to be related to superficial infections, and hyphal forms can apparently invade deeper tissues between the epithelial cells by degradation of E-Cad. Basement membrane degradation is possible, especially in the junctional epithelium, which contains only Lm-332 as a structural component. Local tissue host inflammatory mediators, such as MMP-9, were activated, and TIMP-1 was degraded by certain Candida species, thus indicating the possibility of a weakened host tissue defence mechanism in vivo.