74 resultados para Functional traits
Resumo:
Sec1/Munc18 (SM) protein family members are evolutionary conserved proteins. They perform an essential, albeit poorly understood function in SNARE complex formation in membrane fusion. In addition to the SNARE complex components, only a few SM protein binding proteins are known. Typically, their binding modes to SM proteins and their contribution to the membrane fusion regulation is poorly characterised. We identified Mso1p as a novel Sec1p interacting partner. It was shown that Mso1p and Sec1p interact at sites of polarised secretion and that this localisation is dependent on the Rab GTPase Sec4p and its GEF Sec2p. Using targeted mutagenesis and N- and C-terminal deletants, it was discovered that the interaction between an N-terminal peptide of Mso1p and the putative Syntaxin N-peptide binding area in Sec1p domain 1 is important for membrane fusion regulation. The yeast Syntaxin homologues Sso1p and Sso2p lack the N-terminal peptide. Our results show that in addition to binding to the putative N-peptide binding area in Sec1p, Mso1p can interact with Sso1p and Sso2p. This result suggests that Mso1p can mimic the N-peptide binding to facilitate membrane fusion. In addition to Mso1p, a novel role in membrane fusion regulation was revealed for the Sec1p C-terminal tail, which is missing in its mammalian homologues. Deletion of the Sec1p-tail results in temperature sensitive growth and reduced sporulation. Using in vivo and in vitro experiments, it was shown that the Sec1p-tail mediates SNARE complex binding and assembly. These results propose a regulatory role for the Sec1p-tail in SNARE complex formation. Furthermore, two novel interaction partners for Mso1p, the Rab GTPase Sec4p and plasma membrane phospholipids, were identified. The Sec4p link was identified using Bimolecular Fluorescence Complementation assays with Mso1p and the non-SNARE binding Sec1p(1-657). The assay revealed that Mso1p can target Sec1p(1-657) to sites of secretion. This effect is mediated via the Mso1p C-terminus, which previously has been genetically linked to Sec4p. These results and in vitro binding experiments suggest that Mso1p acts in cooperation with the GTP-bound form of Sec4p on vesicle-like structures prior to membrane fusion. Mso1p shares homology with the PIP2 binding domain of the mammalian Munc18 binding Mint proteins. It was shown both in vivo and in vitro that Mso1p is a phospholipid inserting protein and that this insertion is mediated by the conserved Mso1p amino terminus. In vivo, the Mso1p phospholipid binding is needed for sporulation and Mso1p-Sec1p localisation at the sites of secretion at the plasma membrane. The results reveal a novel layer of membrane fusion regulation in exocytosis and propose a coordinating role for Mso1p in connection with membrane lipids, Sec1p, Sec4p and SNARE complexes in this process.
Resumo:
A density-functional approach on the hexagonal graphene lattice is developed using an exact numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the local density approximation are parameterized for both variants. The method is used to calculate the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are found to agree with exact diagonalization for small systems, also if local impurities are present. In addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of the scope of exact diagonalization methods.
Resumo:
This thesis examines the associations between personality traits and sleep quantity and quality in young adults. Additionally the possible effects of birth status on these associations are examined. The data used in this thesis is part of a birth cohort study (Helsinki Study of Very Low Birth Weight Adults). The personality traits are based on the five-factor model of personality. The sleep quantity and quality are based on actigraphy assessments. Four hypothesis were made about the personality and sleep associations: (1) neuroticism is related to a lesser quality of sleep, (2) there will be more significant associations between personality traits and sleep quality than between personality traits and sleep quantity, (3) the Very Low Birth Weight (VLBW) as well as, (4) the Small for Gestational Age (SGA) status will affect the associations. Linear regressions were used to study the associations between personality traits and sleep quality and quantity. Whenever an association was significant, it was tested whether this association was moderated first, by the VLBW and second, by the SGA status of the participant. The results were mostly in line with previous research especially demonstrating the negative association between neuroticism and the quality of sleep and suggesting that vulnerability to stress decreases sleep quality. Also it was found that agreeableness and conscientiousness were associated with better sleep quality and extraversion was associated with lower sleep quantity. In addition SGA status moderated the personality and sleep associations. It is proposed that there are two factors behind the interaction. First, prenatally developing mechanisms have an effect on the development of sleep as well as personality. Second, differences in the postnatal environment, for instance the parenting practices, can account for this finding. Future research could focus especially on what kind of prenatal disturbances SGA infants have in the development of mechanisms related to sleep and personality. Also focusing on the differences in parental interaction might shed more light on the results.
Resumo:
Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial plantations. The main points under consideration were the acclimatization potential of aspen through changes in leaf morphology, as well as effects on growth, leaf litter chemistry and decomposition. The thesis is based on two experiments, in which young aspen (< 1 year) were exposed either to an atmospheric pollutant [elevated ozone (O3)] or variable resource availability [water, nitrogen (N)]; and two field studies, in which mature trees (> 8 years) were growing in environments exposed to multiple environmental stress factors (roadside and urban environments). The field studies included litter decomposition experiments. The results show that young aspen, especially the native European aspen, was sensitive to O3 in terms of visible leaf injuries. Elevated O3 resulted in reduced biomass allocation to roots and accelerated leaf senescence, suggesting negative effects on growth in the long term. Water and N availability modified the frost hardening of young aspen: High N supply, especially when combined with drought, postponed the development of frost hardiness, which in turn may predispose trees to early autumn frosts. This effect was more pronounced in European aspen. The field studies showed that mature aspen acclimatized to roadside and urban environments by producing more xeromorphic leaves. Leaf morphology was also observed to vary in response to interannual climatic variation, which further indicates the ability of aspen for phenotypic plasticity. Intraspecific variation was found in several of the traits measured, although intraspecific differences in response to the abiotic factors examined were generally small throughout the studies. However, some differences between clones were found in sensitivity to O3 and the roadside environment. Aspen leaf litter decomposition was retarded in the roadside environment, but only initially. By contrast, decomposition was found to be faster in the urban than the rural environment throughout the study. The higher quality of urban litter (higher in N, lower in lignin and phenolics), as well as higher temperature, N deposition and humus pH at the urban site were factors likely to promote decay. The phenotypic plasticity combined with intraspecific variation found in the studies imply that aspen has potential for withstanding environmental changes, although some global change factors, such as rising O3 levels, may adversely affect its performance. The results also suggest that the multiple environmental changes taking place in urban areas which correspond closely with the main drivers of global change can modify ecosystem functioning by promoting litter decomposition, mediated partly by alterations in leaf litter quality.
Resumo:
Continuing urbanization is a crucial driver of land transformation, having widespread impacts on virtually all ecosystems. Terrestrial ecosystems, including disturbed ones, are dependent on soils, which provide a multitude of ecosystem services. As soils are always directly and/or indirectly impacted through land transformation, land cover change causes soil change. Knowledge of ecosystem properties and functions in soils is increasing in importance as humans continue to concentrate into already densely-populated areas. Urban soils often have hampered functioning due to various disturbances resulting from human activity. Innovative solutions are needed to bring the lacking ecosystem services and quality of life to these urban environments. For instance, the ecosystem services of the urban green infrastructure may be substantially improved through knowledge of their functional properties. In the research forming this thesis, the impacts of four plant species (Picea abies, Calluna vulgaris, Lotus corniculatus and Holcus lanatus) on belowground biota and regulatory ecosystem services were investigated in two different urban soil types. The retention of inorganic nitrogen and phosphorus in the plant-soil system, decomposition of plant litter, primary production, and the degradation of polycyclic aromatic hydrocarbons (PAHs) were examined in the field and under laboratory conditions. The main objective of the research was to determine whether the different plant species (representing traits with varying litter decomposability) will give rise to dissimilar urban belowground communities with differing ecological functions. Microbial activity as well as the abundance of nematodes and enchytraeid worm biomass was highest below the legume L. corniculatus. L. corniculatus and the grass H. lanatus, producing labile or intermediate quality litter, enhanced the proportion of bacteria in the soil rhizosphere, while the recalcitrant litter-producing shrub C. vulgaris and the conifer P. abies stimulated the growth of fungi. The loss of nitrogen from the plant-soil system was small for H. lanatus and the combination of C. vulgaris + P. abies, irrespective of their energy channel composition. These presumably nitrogen-conservative plant species effectively diminished the leaching losses from the plant-soil systems with all the plant traits present. The laboratory experiment revealed a difference in N allocation between the plant traits: C. vulgaris and P. abies sequestered significantly more N in aboveground shoots in comparison to L. corniculatus and H. Lanatus. Plant rhizosphere effects were less clear for phosphorus retention, litter decomposition and the degradation of PAH compounds. This may be due to the relatively short experimental durations, as the maturation of the plant-soil system is likely to take a considerably longer time. The empirical studies of this thesis demonstrated that the soil communities rapidly reflect changes in plant coverage, and this has consequences for the functionality of soils. The energy channel composition of soils can be manipulated through plants, which was also supported by the results of the separate meta-analysis conducted in this thesis. However, further research is needed to understand the linkages between the biological community properties and ecosystem services in strongly human-modified systems.
Resumo:
Microchips for use in biomolecular analysis show a lot of promise for medical diagnostics and biomedical basic research. Among the potential advantages are more sensitive and faster analyses as well as reduced cost and sample consumption. Due to scaling laws, the surface are to volume ratios of microfluidic chips is very high. Because of this, tailoring the surface properties and surface functionalization are very important technical issues for microchip development. This thesis studies two different types of functional surfaces, surfaces for open surface capillary microfluidics and surfaces for surface assisted laser desorption ionization mass spectrometry, and combinations thereof. Open surface capillary microfluidics can be used to transport and control liquid samples on easily accessible open surfaces simply based on surface forces, without any connections to pumps or electrical power sources. Capillary filling of open partially wetting grooves is shown to be possible with certain geometries, aspect ratios and contact angles, and a theoretical model is developed to identify complete channel filling domains, as well as partial filling domains. On the other hand, partially wetting surfaces with triangular microstructures can be used for achieving directional wetting, where the water droplets do not spread isotropically, but instead only spread to a predetermined sector. Furthermore, by patterning completely wetting and superhydrophobic areas on the same surface, complex droplet shapes are achieved, as the water stretches to make contact with the wetting surface, but does not enter into the superhydrophobic domains. Surfaces for surface assisted laser desorption ionization mass spectrometry are developed by applying various active thin film coatings on multiple substrates, in order to separate surface and bulk effects. Clear differences are observed between both surface and substrate layers. The best performance surfaces consisted of amorphous silicon coating and an inorganic-organic hybrid substrate, with nanopillars and nanopores. These surfaces are used for matrix-free ionization of drugs, peptides and proteins, and for some analytes, the detection limits were in the high attomoles. Microfluidics and laser desorption ionization surfaces are combined on a functionalized drying platforms, where the surface is used to control the shape of the deposited analyte droplet, and the shape of the initial analyte droplet affects the dried droplet solute deposition pattern. The deposited droplets can then directly detected by mass spectrometry. Utilizing this approach, results of analyte concentration, splitting and separation are demonstrated.
Resumo:
There is substantial evidence of the decreased functional capacity, especially everyday functioning, of people with psychotic disorder in clinical settings, but little research about it in the general population. The aim of the present study was to provide information on the magnitude of functional capacity problems in persons with psychotic disorder compared with the general population. It estimated the prevalence and severity of limitations in vision, mobility, everyday functioning and quality of life of persons with psychotic disorder in the Finnish population and determined the factors affecting them. This study is based on the Health 2000 Survey, which is a nationally representative survey of 8028 Finns aged 30 and older. The psychotic diagnoses of the participants were assessed in the Psychoses of Finland survey, a substudy of Health 2000. The everyday functioning of people with schizophrenia is studied widely, but one important factor, mobility has been neglected. Persons with schizophrenia and other non-affective psychotic disorders, but not affective psychoses had a significantly increased risk of having both self-reported and test-based mobility limitations as well as weak handgrip strength. Schizophrenia was associated independently with mobility limitations even after controlling for lifestyle-related factors and chronic medical conditions. Another significant factor associated with problems in everyday functioning in participants with schizophrenia was reduced visual acuity. Their vision was examined significantly less often during the five years before the visual acuity measurement than the general population. In general, persons with schizophrenia and other non-affective psychotic disorder had significantly more limitations in everyday functioning, deficits in verbal fluency and in memory than the general population. More severe negative symptoms, depression, older age, verbal memory deficits, worse expressive speech and reduced distance vision were associated with limitations in everyday functioning. Of all the psychotic disorders, schizoaffective disorder was associated with the largest losses of quality of life, and bipolar I disorder with equal or smaller losses than schizophrenia. However, the subjective loss of qualify of life associated with psychotic disorders may be smaller than objective disability, which warrants attention. Depressive symptoms were the most important determinant of poor quality of life in all psychotic disorders. In conclusion, subjects with psychotic disorders need regular somatic health monitoring. Also, health care workers should evaluate the overall quality of life and depression of subjects with psychotic disorders in order to provide them with the basic necessities of life.
Resumo:
The work presented here has focused on the role of cation-chloride cotransporters (CCCs) in (1) the regulation of intracellular chloride concentration within postsynaptic neurons and (2) on the consequent effects on the actions of the neurotransmitter gamma-aminobutyric acid (GABA) mediated by GABAA receptors (GABAARs) during development and in pathophysiological conditions such as epilepsy. In addition, (3) we found that a member of the CCC family, the K-Cl cotransporter isoform 2 (KCC2), has a structural role in the development of dendritic spines during the differentiation of pyramidal neurons. Despite the large number of publications dedicated to regulation of intracellular Cl-, our understanding of the underlying mechanisms is not complete. Experiments on GABA actions under resting steady-state have shown that the effect of GABA shifts from depolarizing to hyperpolarizing during maturation of cortical neurons. However, it remains unclear, whether conclusions from these steady-state measurements can be extrapolated to the highly dynamic situation within an intact and active neuronal network. Indeed, GABAergic signaling in active neuronal networks results in a continuous Cl- load, which must be constantly removed by efficient Cl- extrusion mechanisms. Therefore, it seems plausible to suggest that key parameters are the efficacy and subcellular distribution of Cl- transporters rather than the polarity of steady-state GABA actions. A further related question is: what are the mechanisms of Cl- regulation and homeostasis during pathophysiological conditions such as epilepsy in adults and neonates? Here I present results that were obtained by means of a newly developed method of measurements of the efficacy of a K-Cl cotransport. In Study I, the developmental profile of KCC2 functionality during development was analyzed both in dissociated neuronal cultures and in acute hippocampal slices. A novel method of photolysis of caged GABA in combination with Cl- loading to the somata was used in this study to assess the extrusion efficacy of KCC2. We demonstrated that these two preparations exhibit a different temporal profile of functional KCC2 upregulation. In Study II, we reported an observation of highly distorted dendritic spines in neurons cultured from KCC2-/- embryos. During their development in the culture dish, KCC2-lacking neurons failed to develop mature, mushroom-shaped dendritic spines but instead maintained an immature phenotype of long, branching and extremely motile protrusions. It was shown that the role of KCC2 in spine maturation is not based on its transport activity, but is mediated by interactions with cytoskeletal proteins. Another important player in Cl- regulation, NKCC1 and its role in the induction and maintenance of native Cl- gradients between the axon initial segment (AIS) and soma was the subject of Study III. There we demonstrated that this transporter mediates accumulation of Cl- in the axon initial segment of neocortical and hippocampal principal neurons. The results suggest that the reversal potential of the GABAA response triggered by distinct populations of interneurons show large subcellular variations. Finally, a novel mechanism of fast post-translational upregulation of the membrane-inserted, functionally active KCC2 pool during in-vivo neonatal seizures and epileptiform-like activity in vitro was identified and characterized in Study IV. The seizure-induced KCC2 upregulation may act as an intrinsic antiepileptogenic mechanism.
Resumo:
Traumatic brain injury (TBI) affects people of all ages and is a cause of long-term disability. In recent years, the epidemiological patterns of TBI have been changing. TBI is a heterogeneous disorder with different forms of presentation and highly individual outcome regarding functioning and health-related quality of life (HRQoL). The meaning of disability differs from person to person based on the individual s personality, value system, past experience, and the purpose he or she sees in life. Understanding of all these viewpoints is needed in comprehensive rehabilitation. This study examines the epidemiology of TBI in Finland as well as functioning and HRQoL after TBI, and compares the subjective and objective assessments of outcome. The frame of reference is the International Classification of Functioning, Disability and Health (ICF). The subjects of Study I represent the population of Finnish TBI patients who experienced their first TBI between 1991 and 2005. The 55 Finnish subjects of Studies II and IV participated in the first wave of the international Quality of life after brain injury (QOLIBRI) validation study. The 795 subjects from six language areas of Study III formed the second wave of the QOLIBRI validation study. The average annual incidence of Finnish hospitalised TBI patients during the years 1991-2005 was 101:100 000 in patients who had TBI as the primary diagnosis and did not have a previous TBI in their medical history. Males (59.2%) were at considerably higher risk of getting a TBI than females. The most common external cause of the injury was falls in all age groups. The number of TBI patients ≥ 70 years of age increased by 59.4% while the number of inhabitants older than 70 years increased by 30.3% in the population of Finland during the same time period. The functioning of a sample of 55 persons with TBI was assessed by extracting information from the patients medical documents using the ICF checklist. The most common problems were found in the ICF components of Body Functions (b) and Activities and Participation (d). HRQoL was assessed with the QOLIBRI which showed the highest level of satisfaction on the Emotions, Physical Problems and Daily Life and Autonomy scales. The highest scores were obtained by the youngest participants and participants living independently without the help of other people, and by people who were working. The relationship between the functional outcome and HRQoL was not straightforward. The procedure of linking the QOLIBRI and the GOSE to the ICF showed that these two outcome measures cover the relevant domains of TBI patients functioning. The QOLIBRI provides the patients subjective view, while the GOSE summarises the objective elements of functioning. Our study indicates that there are certain domains of functioning that are not traditionally sufficiently documented but are important for the HRQoL of persons with TBI. This was the finding especially in the domains of interpersonal relationships, social and leisure activities, self, and the environment. Rehabilitation aims to optimize functioning and to minimize the experience of disability among people with health conditions, and it needs to be based on a comprehensive understanding of human functioning. As an integrative model, the ICF may serve as a frame of reference in achieving such an understanding.
Resumo:
Neurofibromatosis 2 (NF2) is an autosomal dominant disorder manifested by the formation of multiple benign tumors of the nervous system. Affected individuals typically develop bilateral vestibular schwannomas which lead to deafness and balance disorders. The syndrome is caused by inactivation of the NF2 tumor suppressor gene, and mutation or loss of the NF2 product, merlin, is sufficient for tumorigenesis in both hereditary and sporadic NF2-associated tumors. Merlin belongs to the band 4.1 superfamily of cytoskeletal proteins, which also contain the related ezrin, radixin, and moesin (ERM) proteins. The ERM members provide a link between the cell cytoskeleton and membrane by connecting membrane-associated proteins to actin filaments. By stabilizing complexes in the cell cortex, the ERMs modulate morphology, growth, and migration of cells. Despite their structural homology, overlapping subcellular distribution, direct molecular association, and partial overlap of molecular interactions, merlin and ezrin exert opposite effects on cell proliferation. Merlin suppresses cell proliferation, whereas ezrin expression is linked to oncogenic activity. We hypothesized that the regions which differ between the proteins might explain merlin s specificity as a tumor suppressor. We therefore analyzed the regions, which are most diverse between merlin and ezrin; the N-terminal tail and the C-terminus. To determine the properties of the C-terminal region, we studied the two most predominant merlin isoforms together with truncation variants similar to those found in patients. We also focused on the evolutionally conserved C-terminal residues, E545-E547, that harbor disease causing mutations in its corresponding DNA sequence. In addition to inhibiting cell proliferation, merlin regulates cytoskeletal organization. The morphogenic properties of merlin may play a role in tumor suppression, since patient-derived tumor cells demonstrate cytoskeletal abnormalities. We analyzed the mechanisms of merlin-induced extension formation and determined that the C-terminal region of amino acids 538-568 is particularly important for the morphogenic activity. We also characterized the role of C-terminal merlin residues in the regulation of proliferation, phosphorylation, and intramolecular associations. In contrast to previous reports, we demonstrated that both merlin isoforms are able to suppress cell proliferation, whereas C-terminally mutated merlin constructs showed reduced growth inhibition. Phosphorylation serves as a mechanism to regulate the tumor suppressive activity of merlin. The C-terminal serine 518 is phosphorylated in response to both p21-activated kinase (PAK) and protein kinase A (PKA), which inactivates the growth inhibitory function of merlin. However, at least three differentially phosphorylated forms of the protein exist. In this study we demonstrated that also the N-terminus of merlin is phosphorylated by AGC kinases, and that both PKA and Akt phosphorylate merlin at serine 10 (S10). We evaluated the impact of this N-terminal tail phosphorylation, and showed that the phosphorylation state of S10 is an important regulator of merlin s ability to modulate cytoskeletal organization but also regulates the stability of the protein. In summary, this study describes the functional effect of merlin specific regions. We demonstrate that both S10 in the N-terminal tail and residues E545-E547 in the C-terminus are essential for merlin activity and function.