64 resultados para physics.bio-ph
Resumo:
We study the energy current in a model of heat conduction, first considered in detail by Casher and Lebowitz. The model consists of a one-dimensional disordered harmonic chain of n i.i.d. random masses, connected to their nearest neighbors via identical springs, and coupled at the boundaries to Langevin heat baths, with respective temperatures T_1 and T_n. Let EJ_n be the steady-state energy current across the chain, averaged over the masses. We prove that EJ_n \sim (T_1 - T_n)n^{-3/2} in the limit n \to \infty, as has been conjectured by various authors over the time. The proof relies on a new explicit representation for the elements of the product of associated transfer matrices.
Resumo:
Global dynamo simulations solving the equations of magnetohydrodynamics (MHD) have been a tool of astrophysicists who try to understand the magnetism of the Sun for several decades now. During recent years many fundamental issues in dynamo theory have been studied in detail by means of local numerical simulations that simplify the problem and allow the study of physical effects in isolation. Global simulations, however, continue to suffer from the age-old problem of too low spatial resolution, leading to much lower Reynolds numbers and scale separation than in the Sun. Reproducing the internal rotation of the Sun, which plays a crucual role in the dynamo process, has also turned out to be a very difficult problem. In the present paper the current status of global dynamo simulations of the Sun is reviewed. Emphasis is put on efforts to understand how the large-scale magnetic fields, i.e. whose length scale is greater than the scale of turbulence, are generated in the Sun. Some lessons from mean-field theory and local simulations are reviewed and their possible implications to the global models are discussed. Possible remedies to some of the current issues of the solar simulations are put forward.
Resumo:
Understanding the responses of species and ecosystems to human-induced global environmental change has become a high research priority. The main aim of this thesis was to investigate how certain environmental factors that relate to global change affect European aspen (Populus tremula), a keystone species in boreal forests, and hybrid aspen (P. tremula × P. tremuloides), cultivated in commercial plantations. The main points under consideration were the acclimatization potential of aspen through changes in leaf morphology, as well as effects on growth, leaf litter chemistry and decomposition. The thesis is based on two experiments, in which young aspen (< 1 year) were exposed either to an atmospheric pollutant [elevated ozone (O3)] or variable resource availability [water, nitrogen (N)]; and two field studies, in which mature trees (> 8 years) were growing in environments exposed to multiple environmental stress factors (roadside and urban environments). The field studies included litter decomposition experiments. The results show that young aspen, especially the native European aspen, was sensitive to O3 in terms of visible leaf injuries. Elevated O3 resulted in reduced biomass allocation to roots and accelerated leaf senescence, suggesting negative effects on growth in the long term. Water and N availability modified the frost hardening of young aspen: High N supply, especially when combined with drought, postponed the development of frost hardiness, which in turn may predispose trees to early autumn frosts. This effect was more pronounced in European aspen. The field studies showed that mature aspen acclimatized to roadside and urban environments by producing more xeromorphic leaves. Leaf morphology was also observed to vary in response to interannual climatic variation, which further indicates the ability of aspen for phenotypic plasticity. Intraspecific variation was found in several of the traits measured, although intraspecific differences in response to the abiotic factors examined were generally small throughout the studies. However, some differences between clones were found in sensitivity to O3 and the roadside environment. Aspen leaf litter decomposition was retarded in the roadside environment, but only initially. By contrast, decomposition was found to be faster in the urban than the rural environment throughout the study. The higher quality of urban litter (higher in N, lower in lignin and phenolics), as well as higher temperature, N deposition and humus pH at the urban site were factors likely to promote decay. The phenotypic plasticity combined with intraspecific variation found in the studies imply that aspen has potential for withstanding environmental changes, although some global change factors, such as rising O3 levels, may adversely affect its performance. The results also suggest that the multiple environmental changes taking place in urban areas which correspond closely with the main drivers of global change can modify ecosystem functioning by promoting litter decomposition, mediated partly by alterations in leaf litter quality.
Resumo:
Enzymes offer many advantages in industrial processes, such as high specificity, mild treatment conditions and low energy requirements. Therefore, the industry has exploited them in many sectors including food processing. Enzymes can modify food properties by acting on small molecules or on polymers such as carbohydrates or proteins. Crosslinking enzymes such as tyrosinases and sulfhydryl oxidases catalyse the formation of novel covalent bonds between specific residues in proteins and/or peptides, thus forming or modifying the protein network of food. In this study, novel secreted fungal proteins with sequence features typical of tyrosinases and sulfhydryl oxidases were iden-tified through a genome mining study. Representatives of both of these enzyme families were selected for heterologous produc-tion in the filamentous fungus Trichoderma reesei and biochemical characterisation. Firstly, a novel family of putative tyrosinases carrying a shorter sequence than the previously characterised tyrosinases was discovered. These proteins lacked the whole linker and C-terminal domain that possibly play a role in cofactor incorporation, folding or protein activity. One of these proteins, AoCO4 from Aspergillus oryzae, was produced in T. reesei with a production level of about 1.5 g/l. The enzyme AoCO4 was correctly folded and bound the copper cofactors with a type-3 copper centre. However, the enzyme had only a low level of activity with the phenolic substrates tested. Highest activity was obtained with 4-tert-butylcatechol. Since tyrosine was not a substrate for AoCO4, the enzyme was classified as catechol oxidase. Secondly, the genome analysis for secreted proteins with sequence features typical of flavin-dependent sulfhydryl oxidases pinpointed two previously uncharacterised proteins AoSOX1 and AoSOX2 from A. oryzae. These two novel sulfhydryl oxidases were produced in T. reesei with production levels of 70 and 180 mg/l, respectively, in shake flask cultivations. AoSOX1 and AoSOX2 were FAD-dependent enzymes with a dimeric tertiary structure and they both showed activity on small sulfhydryl compounds such as glutathione and dithiothreitol, and were drastically inhibited by zinc sulphate. AoSOX2 showed good stabil-ity to thermal and chemical denaturation, being superior to AoSOX1 in this respect. Thirdly, the suitability of AoSOX1 as a possible baking improver was elucidated. The effect of AoSOX1, alone and in combi-nation with the widely used improver ascorbic acid was tested on yeasted wheat dough, both fresh and frozen, and on fresh water-flour dough. In all cases, AoSOX1 had no effect on the fermentation properties of fresh yeasted dough. AoSOX1 nega-tively affected the fermentation properties of frozen doughs and accelerated the damaging effects of the frozen storage, i.e. giving a softer dough with poorer gas retention abilities than the control. In combination with ascorbic acid, AoSOX1 gave harder doughs. In accordance, rheological studies in yeast-free dough showed that the presence of only AoSOX1 resulted in weaker and more extensible dough whereas a dough with opposite properties was obtained if ascorbic acid was also used. Doughs containing ascorbic acid and increasing amounts of AoSOX1 were harder in a dose-dependent manner. Sulfhydryl oxidase AoSOX1 had an enhancing effect on the dough hardening mechanism of ascorbic acid. This was ascribed mainly to the produc-tion of hydrogen peroxide in the SOX reaction which is able to convert the ascorbic acid to the actual improver dehydroascorbic acid. In addition, AoSOX1 could possibly oxidise the free glutathione in the dough and thus prevent the loss of dough strength caused by the spontaneous reduction of the disulfide bonds constituting the dough protein network. Sulfhydryl oxidase AoSOX1 is therefore able to enhance the action of ascorbic acid in wheat dough and could potentially be applied in wheat dough baking.
Resumo:
Inelastic x-ray scattering spectroscopy is a versatile experimental technique for probing the electronic structure of materials. It provides a wealth of information on the sample's atomic-scale structure, but extracting this information from the experimental data can be challenging because there is no direct relation between the structure and the measured spectrum. Theoretical calculations can bridge this gap by explaining the structural origins of the spectral features. Reliable methods for modeling inelastic x-ray scattering require accurate electronic structure calculations. This work presents the development and implementation of new schemes for modeling the inelastic scattering of x-rays from non-periodic systems. The methods are based on density functional theory and are applicable for a wide variety of molecular materials. Applications are presented in this work for amorphous silicon monoxide and several gas phase systems. Valuable new information on their structure and properties could be extracted with the combination of experimental and computational methods.
Resumo:
Tämän pro gradu -tutkielman tarkoituksena on määrittää jätteenkeräyksen ja -siirron yhteiskunnalliset kustannukset valitulla tutkimusalueella Helsingin Punavuoressa. Jätteenkeräyksen ja -siirron kustannukset vastaavat suuruudeltaan merkittävää osaa jätehuollon kokonaiskustannuksista, minkä vuoksi kustannusten tutkimiselle ja tarkastelulle löytyy kysyntää. Lisäksi keräyksen ja siirron kustannukset saattavat vaihdella suuresti johtuen erilaisista kaupunkirakenteista,keräysmenetelmistä ja teknologioista, joten tapaustarkastelun avulla pystytään selvittämään yksityiskohtaisesti alueen jätteenkeräyksen ja -siirron kustannukset. Tutkimusalue Helsingin Punavuoressa on yksi Suomen tiheimmin asutuista alueista, missä jätteidenkeräystä hankaloittaa kapeat kadut, useat sisäpihoille sijoitetut jätehuoneet ja vilkas liikenne. Erityispiirteidensä vuoksi jätteenkeräys- ja siirto aiheuttaa tutkimusalueella yksityisten kustannusten lisäksi myös useita ulkoisvaikutuksia muun muassa ilmansaasteiden ja viihtyvyyshaittojen muodossa. Tässä työssä lasketaan jätteenkeräyksen ja -siirron yhteiskunnalliset kustannukset neljän eri jätelajin osalta huomioimalla sekä yksityiset kustannustekijät että ulkoiskustannuksina syntyvien päästöjen kustannukset. Työn aineistona on käytetty erilaisia kustannuslaskelmien kirjallisuuslähteitä, asiantuntija-arvioita ja tutkimusalueella tehtyjä kellotusmittauksia. Alueen kellotusmittauksiin perustuvalla aikaperusteisella laskentatavalla jätteenkeräyksen ja -siirron jätetonnikohtaisiksi keskimääräisiksi kustannuksiksi saatiin 73 €/t. Kustannuksissa havaittiin kuitenkin suuria jätelajikohtaisia eroja, jolloin keräyksen ja siirron kustannukset heittelivät 49–125 €/t välillä. Suuret jätelajikohtaiset kustannuserot ovat selitettävissä pitkälti jätteiden koostumuksella, koska kevyiden ja paljon tilaa vievien jätelajien jätetonnikohtaiset kustannukset olivat suurimpia. Teoriataustan ja lähdeaineiston perusteella saadut tulokset myös osoittavat, että jätteenkeräyksen ja siirron kustannuksista huomioitujen ulkoiskustannusten osuus on häviävän pieni verrattuna yksityisten kustannusten tasoon.
Resumo:
Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.
Resumo:
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic boundary conditions. In fully periodic systems the level of turbulence generated by the MRI strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm=1 is found, agreeing with earlier investigations. Using vertical field conditions, which allow magnetic helicity fluxes out of the system, the MRI is found to be excited in the range 0.1
Resumo:
Context. Turbulent fluxes of angular momentum and heat due to rotationally affected convection play a key role in determining differential rotation of stars. Aims. We compute turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. Methods. We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results. For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong 'banana cells'. Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance.