90 resultados para protein deficiency
Resumo:
The antioxidant activity of natural plant materials rich in phenolic compounds is being widely investigated for protection of food products sensitive to oxidative reactions. In this thesis plant materials rich in phenolic compounds were studied as possible antioxidants to prevent protein and lipid oxidation reactions in different food matrixes such as pork meat patties and corn oil-in water emulsions. Loss of anthocyanins was also measured during oxidation in corn oil-in-water emulsions. In addition, the impact of plant phenolics on amino acid level was studied using tryptophan as a model compound to elucidate their role in preventing the formation of tryptophan oxidation products. A high-performance liquid chromatography (HPLC) method with ultraviolet and fluorescence detection (UV-FL) was developed that enabled fast investigation of formation of tryptophan derived oxidation products. Byproducts of oilseed processes such as rapeseed (Brassica rapa L.), camelina (Camelina sativa) and soy meal (Glycine max L.) as well as Scots pine bark (Pinus sylvestris) and several reference compounds were shown to act as antioxidants toward both protein and lipid oxidation in cooked pork meat patties. In meat, the antioxidant activity of camelina, rapeseed and soy meal were more pronounced when used in combination with a commercial rosemary extract (Rosmarinus officinalis). Berry phenolics such as black currant (Ribes nigrum) anthocyanins and raspberry (Rubus idaeus) ellagitannins showed potent antioxidant activity in corn oil-in-water emulsions toward lipid oxidation with and without β-lactoglobulin. The antioxidant effect was more pronounced in the presence of β-lactoglobulin. The berry phenolics also inhibited the oxidation of tryptophan and cysteine side chains of β-lactoglobulin. The results show that the amino acid side chains were oxidized prior the propagation of lipid oxidation, thereby inhibiting fatty acid scission. In addition, the concentration and color of black currant anthocyanins decreased during the oxidation. Oxidation of tryptophan was investigated in two different oxidation models with hydrogen peroxide (H2O2) and hexanal/FeCl2. Oxidation of tryptophan in both models resulted in oxidation products such as 3a-hydroxypyrroloindole-2-carboxylic acid, dioxindolylalanine, 5-hydroxy-tryptophan, kynurenine, N-formylkynurenine and β-oxindolylalanine. However, formation of tryptamine was only observed in tryptophan oxidized in the presence of H2O2. Pine bark phenolics, black currant anthocyanins, camelina meal phenolics as well as cranberry proanthocyanidins (Vaccinium oxycoccus) provided the best antioxidant effect toward tryptophan and its oxidation products when oxidized with H2O2. The tryptophan modifications formed upon hexanal/FeCl2 treatment were efficiently inhibited by camelina meal followed by rapeseed and soy meal. In contrast, phenolics from raspberry, black currant, and rowanberry (Sorbus aucuparia) acted as weak prooxidants. This thesis contributes to elucidating the effects of natural phenolic compounds as potential antioxidants in order to control and prevent protein and lipid oxidation reactions. Understanding the relationship between phenolic compounds and proteins as well as lipids could lead to the development of new, effective, and multifunctional antioxidant strategies that could be used in food, cosmetic and pharmaceutical applications.
Resumo:
The effects of tyrosinase, laccase and transglutaminase (TG) were studied in different meat protein systems. The study was focused on the effects of the enzymes on the gel formation properties of myofibrils, and on the textural and water-holding properties of the heated meat systems. The cross-linking efficiency of a novel Trichoderma reesei tyrosinase was compared to that of the commercial Agaricus bisporus tyrosinase. Trichoderma tyrosinase was found to be superior compared to the Agaricus enzyme in its protein cross-linking efficiency and in the incorporation of a small molecule into a complex proteinaceous substrate. Tyrosinase, laccase and TG all polymerised myofibrillar proteins, but laccase was also found to cause protein fragmentation. A positive connection between covalent cross-link and gel formation was observed with tyrosinase and TG. Laccase was able to increase the gel formation only slightly. With an excessive laccase dosage the gel formation declined due to protein fragmentation. Tyrosinase, laccase and TG had different effects on the texture and water-holding of the heated chicken breast meat homogenates. Tyrosinase improved the firmness of the homogenate gels free of phosphate and with a low amount of meat. TG improved the firmness of all studied homogenates. Laccase weakened the gel firmness of the low-meat, low-salt and low-salt/phosphate homogenates and maintained the firmness on the control level in the homogenate free of phosphate. Tyrosinase was the only enzyme capable of reducing the weight loss in the homogenates containing a low amount of meat and a low amount of NaCl. TG was the only enzyme that could positively affect the firmness of the homogenate gel containing both low NaCl and phosphate amounts. In pilot scale the test products were made of coarsely ground chicken breast fillet with a moderate amount of salt. Increasining the amount of meat, salt and TG contents favoured the development of firmness of the test products. The evaporation loss decreased slightly along with increasing TG and NaCl amounts in the experimental conditions used, indicating a positive interaction between these two factors. In this work it was shown that tyrosinase, laccase and TG affected the same myofibrillar proteins, i.e. myosin and troponin T. However, these enzymes had distinguishable effects on the gel formation of a myofibril system as well as on the textural and water-holding properties of the finely ground meat homogenates, reflecting distinctions at least in the reaction mechanisms and target amino acid availability in the protein substrates for these enzymes.
Resumo:
This study analyzes the war-time rations the Finnish soldiers received on the front from 1939 until 1945. The main objective was to determine the contents of the rations and how they affected the soldiers' nutrition and morale. The information concerning food and feeding is mainly based on the official documents found in the Military Archives. Some additional material was from the historical literature, some from memoirs, or from the veterans who personally experienced the front. The documents in the Archives of Military Medicine provided information on the soldiers' deficiencies. During the Winter War, which took place from 30 November 1939 until 13 March 1940, ample food was available. The cold climate caused problems and the fresh food got frozen. However, no severe deficiency cases were reported and the morale was high. By contrast, during the Continuation War, which began in June, 1941 and ended in September, 1944, difficulties were experienced. At the time farming in the country faced serious problems due to the shortage of labour, fuel, etc. Furthermore, importing food was generally not possible. However, importing food mainly from Germany saved the Finns from hunger. In addition, the self activity of the soldiers on the front added somewhat to the food production. But the rations had to be reduced. Their energy values were consequently low, especially for the young men. Food was monotonous and occasionally caused complaints. The main sources of protein, vitamins and minerals were the whole cereal foods. Butter was fortified with vitamin A and vitamin C tablets were also distributed, to compensate for the scant food sources. Only approximately 300 serious deficiency cases required hospital care during the three years time, out of a total of 400 000 soldiers. Feeding the young soldiers during the war (1944 - 1945) in Lapland, which had been destroyed, was problematic but the increased rations also saved them from deficiencies. In spite of the severe difficulties experienced occasionally in feeding the soldiers during the wars, the system worked all the time. The soldiers were fed, the cases of nutritional deficiency and epidemics caused by food were kept very limited and the morale of soldiers remained high.
Resumo:
We report here the structures and properties of heat-stable, non-protein, and mammalian cell-toxic compounds produced by spore-forming bacilli isolated from indoor air of buildings and from food. Little information is available on the effects and occurrence of heat-stable non-protein toxins produced by bacilli in moisture-damaged buildings. Bacilli emit spores that move in the air and can serve as the carriers of toxins, in a manner similar to that of the spores of toxic fungi found in contaminated indoor air. Bacillus spores in food cause problems because they tolerate the temperatures applied in food manufacture and the spores later initiate growth when food storage conditions are more favorable. Detection of the toxic compounds in Bacillus is based on using the change in mobility of boar spermatozoa as an indicator of toxic exposure. GC, LC, MS, and nuclear magnetic resonance NMR spectroscopy were used for purification, detection, quantitation, and analysis of the properties and structures of the compounds. Toxicity and the mechanisms of toxicity of the compounds were studied using boar spermatozoa, feline lung cells, human neural cells, and mitochondria isolated from rat liver. The ionophoric properties were studied using the BLM (black-lipid membrane) method. One novel toxin, forming ion channels permeant to K+ > Na+ > Ca2+, was found and named amylosin. It is produced by B. amyloliquefaciens isolated from indoor air of moisture-damaged buildings. Amylosin was purified with an RP-HPLC and a monoisotopic mass of 1197 Da was determined with ESI-IT-MS. Furthermore, acid hydrolysis of amylosin followed by analysis of the amino acids with the GS-MS showed that it was a peptide. The presence of a chromophoric polyene group was found using a NMR spectroscopy. The quantification method developed for amylosin based on RP-HPLC-UV, using the macrolactone polyene, amphotericin B (MW 924), as a reference compound. The B. licheniformis strains isolated from a food poisoning case produced a lipopeptide, lichenysin A, that ruptured mammalian cell membranes and was purified with a LC. Lichenysin A was identified by its protonated molecules and sodium- and potassium- cationized molecules with MALDI-TOF-MS. Its protonated forms were observed at m/z 1007, 1021 and 1035. The amino acids of lichenysin A were analyzed with ESI-TQ-MS/MS and, after acid hydrolysis, the stereoisomeric forms of the amino acids with RP-HPLC. The indoor air isolates of the strain of B. amyloliquefaciens produced not only amylosin but also lipopeptides: the cell membrane-damaging surfactin and the fungicidal fengycin. They were identified with ESI-IT-MS observing their protonated molecules, the sodium- and potassium-cationized molecules and analysing the MS/MS spectra. The protonated molecules of surfactin and fengycin showed m/z values of 1009, 1023, and 1037 and 1450, 1463, 1493, and 1506, respectively. Cereulide (MW 1152) was purified with RP-HPLC from a food poisoning strain of B. cereus. Cereulide was identified with ESI-TQ-MS according to the protonated molecule observed at m/z 1154 and the ammonium-, sodium- and potassium-cationized molecules observed at m/z 1171, 1176, and 1192, respectively. The fragment ions of the MS/MS spectrum obtained from the protonated molecule of cereulide at m/z 1154 were also interpreted. We developed a quantification method for cereulide, using RP-HPLC-UV and valinomycin (MW 1110, which structurally resembles cereulide) as the reference compound. Furthermore, we showed empirically, using the BLM method, that the emetic toxin cereulide is a specific and effective potassium ionophore of whose toxicity target is especially the mitochondria.
Resumo:
DNA ja siinä sijaitsevat geenit ohjaavat kaikkea solujen toimintaa. DNA-molekyyleihin kuitenkin kertyy mutaatioita sekä ympäristön vaikutuksen, että solujen oman toiminnan tuloksena. Mikäli virheitä ei korjata, saattaa tuloksena olla solun muuttuminen syöpäsoluksi. Soluilla onkin käytössä useita DNA-virheiden korjausmekanismeja, joista yksi on ns. mismatch repair (MMR). MMR vastaa DNA:n kahdentumisessa syntyvien virheiden korjauksesta. Periytyvät mutaatiot geeneissä, jotka vastaavat MMR-proteiinien rakentamisesta, aiheuttavat ongelmia DNA:n korjauksessa ja altistavat kantajansa periytyvälle ei-polypoottiselle paksusuolisyöpäoireyhtymälle (hereditary nonpolyposis colorectal cancer, HNPCC). Yleisimmin mutatoituneet MMR-geenit ovat MLH1 ja MSH2. HNPCC periytyy vallitsevasti, eli jo toiselta vanhemmalta peritty geenivirhe altistaa syövälle. MMR-geenivirheen kantaja sairastuu syöpään elämänsä aikana suurella todennäköisyydellä, ja sairastumisikä on vain noin 40 vuotta. Syövälle altistavan geenivirheen löytäminen mutaation kantajilta on hyvin tärkeää, sillä säännöllinen seuranta mahdollistaa kehittymässä olevan kasvaimen havaitsemisen ja poistamisen jo aikaisessa vaiheessa. Tämän on osoitettu alentavan syöpäkuolleisuutta merkittävästi. Varma tieto altistuksen alkuperästä on tärkeä myös niille syöpäsuvun jäsenille, jotka eivät kanna kyseistä mutaatiota. Syövälle altistavien mutaatioiden ohella MMR-geeneistä löydetään säännöllisesti muutoksia, jotka ovat normaalia henkilöiden välistä geneettistä vaihtelua, eikä niiden oleteta lisäävän syöpäaltistusta. Altistavien mutaatioiden erottaminen näistä neutraaleista variaatioista on vaikeaa, mutta välttämätöntä altistuneiden tehokkaan seurannan varmistamiseksi. Tässä väitöskirjassa tutkittiin 18:a MSH2 -geenin mutaatiota. Mutaatiot oli löydetty perheistä, joissa esiintyi paljon syöpiä, mutta niiden vaikutus DNA:n korjaustehoon ja syöpäaltistukseen oli epäselvä. Työssä tutkittiin kunkin mutaation vaikutusta MSH2-proteiinin normaaliin toimintaan, ja tuloksia verrattiin potilaiden ja sukujen kliinisiin tietoihin. Tutkituista mutaatiosta 12 aiheutti puutteita MMR-korjauksessa. Nämä mutaatiot tulkittiin syövälle altistaviksi. Analyyseissä normaalisti toimineet 4 mutaatiota eivät todennäköisesti ole syynä syövän syntyyn kyseisillä perheillä. Tulkinta jätettiin avoimeksi 2 mutaation kohdalla. Tutkimuksesta hyötyivät suoraan kuvattujen mutaatioiden kantajaperheet, joiden geenivirheen syöpäaltistuksesta saatiin tietoa, mahdollistaen perinnöllisyysneuvonnan ja seurannan kohdentamisen sitä tarvitseville. Työ selvensi myös mekanismeja, joilla mutatoitunut MSH2-proteiini voi menettää toimintakykynsä.
Resumo:
Integrins are heterodimeric transmembrane adhesion receptors composed of alpha- and beta-subunits and they are vital for the function of multicellular organisms. Integrin-mediated adhesion is a complex process involving both affinity regulation and coupling to the actin cytoskeleton. Integrins also function as bidirectional signaling devices, regulating cell adhesion and migration after inside-out signaling, but also signal into the cell to regulate growth, differentiation and apoptosis after ligand binding. The LFA-1 integrin is exclusively expressed in leukocytes and is of fundamental importance for the function of the immune system. The LFA-1 integrins have short intracellular tails, which are devoid of catalytic activity. These cytoplasmic domains are important for integrin regulation and both the alpha and beta chain become phosphorylated. The alpha chain is constitutively phosphorylated, but the beta chain becomes phosphorylated on serine and functionally important threonine residues only after cell activation. The cytoplasmic tails of LFA-1 bind to many cytoskeletal and signaling proteins regulating numerous cell functions. However, the molecular mechanisms behind these interactions have been poorly understood. Phosphorylation of the cytoplasmic tails of the LFA-1 integrin could provide a mechanism to regulate integrin-mediated cytoskeletal interactions and take part in T cell signaling. In this study, the effects of phosphorylation of LFA-1 integrin cytoplasmic tails on different cellular functions were examined. Site-specific phosphorylation of both the alpha- and beta-chains of the LFA-1 was shown to have a role in the regulation of the LFA-1 integrin.Alpha-chain Ser1140 is needed for integrin conformational changes after chemokine- or integrin ligand-induced activation or after activation induced by active Rap1, whereas beta-chain binds to 14-3-3 proteins through the phosphorylated Thr758 and mediates cytoskeletal reorganization. Thr758 phosphorylation also acts as a molecular switch to inhibit filamin binding and allows 14-3-3 protein binding to integrin cytoplasmic domain, and it was also shown to lead to T cell adhesion, Rac-1/Cdc42 activation and expression of the T cell activation marker CD69, indicating a signaling function for Thr758 phosphorylation in T cells. Thus, phosphorylation of the cytoplasmic tails of LFA-1 plays an important role in different functions of the LFA-1 integrin in T cells. It is of vital importance to study the mechanisms and components of integrin regulation since leukocyte adhesion is involved in many functions of the immune system and defects in the regulation of LFA-1 contributes to auto-immune diseases and fundamental defects in the immune system.
Identification of a secretion signal for the type II protein secretion pathway in Erwinia carotovora