90 resultados para fungal protein
Resumo:
We report here the structures and properties of heat-stable, non-protein, and mammalian cell-toxic compounds produced by spore-forming bacilli isolated from indoor air of buildings and from food. Little information is available on the effects and occurrence of heat-stable non-protein toxins produced by bacilli in moisture-damaged buildings. Bacilli emit spores that move in the air and can serve as the carriers of toxins, in a manner similar to that of the spores of toxic fungi found in contaminated indoor air. Bacillus spores in food cause problems because they tolerate the temperatures applied in food manufacture and the spores later initiate growth when food storage conditions are more favorable. Detection of the toxic compounds in Bacillus is based on using the change in mobility of boar spermatozoa as an indicator of toxic exposure. GC, LC, MS, and nuclear magnetic resonance NMR spectroscopy were used for purification, detection, quantitation, and analysis of the properties and structures of the compounds. Toxicity and the mechanisms of toxicity of the compounds were studied using boar spermatozoa, feline lung cells, human neural cells, and mitochondria isolated from rat liver. The ionophoric properties were studied using the BLM (black-lipid membrane) method. One novel toxin, forming ion channels permeant to K+ > Na+ > Ca2+, was found and named amylosin. It is produced by B. amyloliquefaciens isolated from indoor air of moisture-damaged buildings. Amylosin was purified with an RP-HPLC and a monoisotopic mass of 1197 Da was determined with ESI-IT-MS. Furthermore, acid hydrolysis of amylosin followed by analysis of the amino acids with the GS-MS showed that it was a peptide. The presence of a chromophoric polyene group was found using a NMR spectroscopy. The quantification method developed for amylosin based on RP-HPLC-UV, using the macrolactone polyene, amphotericin B (MW 924), as a reference compound. The B. licheniformis strains isolated from a food poisoning case produced a lipopeptide, lichenysin A, that ruptured mammalian cell membranes and was purified with a LC. Lichenysin A was identified by its protonated molecules and sodium- and potassium- cationized molecules with MALDI-TOF-MS. Its protonated forms were observed at m/z 1007, 1021 and 1035. The amino acids of lichenysin A were analyzed with ESI-TQ-MS/MS and, after acid hydrolysis, the stereoisomeric forms of the amino acids with RP-HPLC. The indoor air isolates of the strain of B. amyloliquefaciens produced not only amylosin but also lipopeptides: the cell membrane-damaging surfactin and the fungicidal fengycin. They were identified with ESI-IT-MS observing their protonated molecules, the sodium- and potassium-cationized molecules and analysing the MS/MS spectra. The protonated molecules of surfactin and fengycin showed m/z values of 1009, 1023, and 1037 and 1450, 1463, 1493, and 1506, respectively. Cereulide (MW 1152) was purified with RP-HPLC from a food poisoning strain of B. cereus. Cereulide was identified with ESI-TQ-MS according to the protonated molecule observed at m/z 1154 and the ammonium-, sodium- and potassium-cationized molecules observed at m/z 1171, 1176, and 1192, respectively. The fragment ions of the MS/MS spectrum obtained from the protonated molecule of cereulide at m/z 1154 were also interpreted. We developed a quantification method for cereulide, using RP-HPLC-UV and valinomycin (MW 1110, which structurally resembles cereulide) as the reference compound. Furthermore, we showed empirically, using the BLM method, that the emetic toxin cereulide is a specific and effective potassium ionophore of whose toxicity target is especially the mitochondria.
Resumo:
Erwinia carotovora subsp. carotovora is a bacterial phytopathogen that causes soft rot in various agronomically important crop plants. A genetically specified resistance to E. carotovora has not been defined, and plant resistance to this pathogen is established through nonspecific activation of basal defense responses. This, together with the broad host range, makes this pathogen a good model for studying the activation of plant defenses. Production and secretion of plant cell wall-degrading enzymes (PCWDE) are central to the virulence of E. carotovora. It also possesses the type III secretion system (TTSS) utilized by many Gram-negative bacteria to secrete virulence- promoting effector proteins to plant cells. This study elucidated the role of E. carotovora HrpN (HrpNEcc), an effector protein secreted through TTSS, and the contribution of this protein in the virulence of E. carotovora. Treatment of plants with HrpNEcc was demonstrated to induce a hypersensitive response (HR) as well as resistance to E. carotovora. Resistance induced by HrpNEcc required both salicylic acid (SA)- and jasmonate/ethylene (JA/ET)-dependent defense signaling in Arabidopsis. Simultaneous treatment of Arabidopsis with HrpNEcc and PCWDE polygalacturonase PehA elicited accelerated and enhanced induction of defense genes but also increased production of superoxide and lesion formation. This demonstrates mutual amplification of defense signaling by these two virulence factors of E. carotovora. Identification of genes that are rapidly induced in response to a pathogen can provide novel information about the early events occurring in the plant defense response. CHLOROPHYLLASE 1 (AtCLH1) and EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15) are both rapidly triggered by E. carotovora in Arabidopsis. Characterization of AtCLH1 encoding chlorophyll-degrading enzyme chlorophyllase indicated that it might have a role in chlorophyll degradation during plant tissue damage. Silencing of this gene resulted in increased accumulation of reactive oxygen species (ROS) in response to pathogen infection in a light-dependent manner. This led to enhanced SA-dependent defenses and resistance to E. carotovora. Moreover, crosstalk between different defense signaling pathways was observed; JA-dependent defenses and resistance to fungal pathogen Alternaria brassicicola were impaired, indicating antagonism between SA- and JA-dependent signaling. Characterization of ERD15 suggested that it is a novel, negative regulator of abscisic acid (ABA) signaling in Arabidopsis. Overexpression of ERD15 resulted in insensitivity to ABA and reduced tolerance of the plants to dehydration stress. However, simultaneously, the resistance of the plants to E. carotovora was enhanced. Silencing of ERD15 improved freezing and drought tolerance of transgenic plants. This, together with the reducing effect of ABA on seed germination, indicated hypersensitivity to this phytohormone. ERD15 was hypothesized to act as a capacitor that controls the appropriate activation of ABA responses in Arabidopsis.
Resumo:
Rhizoctonia spp. are ubiquitous soil inhabiting fungi that enter into pathogenic or symbiotic associations with plants. In general Rhizoctonia spp. are regarded as plant pathogenic fungi and many cause root rot and other plant diseases which results in considerable economic losses both in agriculture and forestry. Many Rhizoctonia strains enter into symbiotic mycorrhizal associations with orchids and some hypovirulent strains are promising biocontrol candidates in preventing host plant infection by pathogenic Rhizoctonia strains. This work focuses on uni- and binucleate Rhizoctonia (respectively UNR and BNR) strains belonging to the teleomorphic genus Ceratobasidium, but multinucleate Rhizoctonia (MNR) belonging to teleomorphic genus Thanatephorus and ectomycorrhizal fungal species, such as Suillus bovinus, were also included in DNA probe development work. Strain specific probes were developed to target rDNA ITS (internal transcribed spacer) sequences (ITS1, 5.8S and ITS2) and applied in Southern dot blot and liquid hybridization assays. Liquid hybridization was more sensitive and the size of the hybridized PCR products could be detected simultaneously, but the advantage in Southern hybridization was that sample DNA could be used without additional PCR amplification. The impacts of four Finnish BNR Ceratorhiza sp. strains 251, 266, 268 and 269 were investigated on Scot pine (Pinus sylvestris) seedling growth, and the infection biology and infection levels were microscopically examined following tryphan blue staining of infected roots. All BNR strains enhanced early seedling growth and affected the root architecture, while the infection levels remained low. The fungal infection was restricted to the outer cortical regions of long roots and typical monilioid cells detected with strain 268. The interactions of pathogenic UNR Ceratobasidium bicorne strain 1983-111/1N, and endophytic BNR Ceratorhiza sp. strain 268 were studied in single or dual inoculated Scots pine roots. The fungal infection levels and host defence-gene activity of nine transcripts [phenylalanine ammonia lyase (pal1), silbene synthase (STS), chalcone synthase (CHS), short-root specific peroxidase (Psyp1), antimicrobial peptide gene (Sp-AMP), rapidly elicited defence-related gene (PsACRE), germin-like protein (PsGER1), CuZn- superoxide dismutase (SOD), and dehydrin-like protein (dhy-like)] were measured from differentially treated and un-treated control roots by quantitative real time PCR (qRT-PCR). The infection level of pathogenic UNR was restricted in BNR- pre-inoculated Scots pine roots, while UNR was more competitive in simultaneous dual infection. The STS transcript was highly up-regulated in all treated roots, while CHS, pal1, and Psyp1 transcripts were more moderately activated. No significant activity of Sp-AMP, PsACRE, PsGER1, SOD, or dhy-like transcripts were detected compared to control roots. The integrated experiments presented, provide tools to assist in the future detection of these fungi in the environment and to understand the host infection biology and defence, and relationships between these interacting fungi in roots and soils. This study further confirms the complexity of the Rhizoctonia group both phylogenetically and in their infection biology and plant host specificity. The knowledge obtained could be applied in integrated forestry nursery management programmes.
Resumo:
Integrins are heterodimeric transmembrane adhesion receptors composed of alpha- and beta-subunits and they are vital for the function of multicellular organisms. Integrin-mediated adhesion is a complex process involving both affinity regulation and coupling to the actin cytoskeleton. Integrins also function as bidirectional signaling devices, regulating cell adhesion and migration after inside-out signaling, but also signal into the cell to regulate growth, differentiation and apoptosis after ligand binding. The LFA-1 integrin is exclusively expressed in leukocytes and is of fundamental importance for the function of the immune system. The LFA-1 integrins have short intracellular tails, which are devoid of catalytic activity. These cytoplasmic domains are important for integrin regulation and both the alpha and beta chain become phosphorylated. The alpha chain is constitutively phosphorylated, but the beta chain becomes phosphorylated on serine and functionally important threonine residues only after cell activation. The cytoplasmic tails of LFA-1 bind to many cytoskeletal and signaling proteins regulating numerous cell functions. However, the molecular mechanisms behind these interactions have been poorly understood. Phosphorylation of the cytoplasmic tails of the LFA-1 integrin could provide a mechanism to regulate integrin-mediated cytoskeletal interactions and take part in T cell signaling. In this study, the effects of phosphorylation of LFA-1 integrin cytoplasmic tails on different cellular functions were examined. Site-specific phosphorylation of both the alpha- and beta-chains of the LFA-1 was shown to have a role in the regulation of the LFA-1 integrin.Alpha-chain Ser1140 is needed for integrin conformational changes after chemokine- or integrin ligand-induced activation or after activation induced by active Rap1, whereas beta-chain binds to 14-3-3 proteins through the phosphorylated Thr758 and mediates cytoskeletal reorganization. Thr758 phosphorylation also acts as a molecular switch to inhibit filamin binding and allows 14-3-3 protein binding to integrin cytoplasmic domain, and it was also shown to lead to T cell adhesion, Rac-1/Cdc42 activation and expression of the T cell activation marker CD69, indicating a signaling function for Thr758 phosphorylation in T cells. Thus, phosphorylation of the cytoplasmic tails of LFA-1 plays an important role in different functions of the LFA-1 integrin in T cells. It is of vital importance to study the mechanisms and components of integrin regulation since leukocyte adhesion is involved in many functions of the immune system and defects in the regulation of LFA-1 contributes to auto-immune diseases and fundamental defects in the immune system.
Resumo:
Wood decay fungi belonging to the species complex Heterobasidion annosum sensu lato are among the most common and economically important species causing root rot and stem decay in conifers of the northern temperate regions. New infections by these pathogens can be suppressed by tree stump treatments using chemical or biological control agents. In Finland, the corticiaceous fungus Phlebiopsis gigantea has been formulated into a commercial biocontrol agent called Rotstop (Verdera Ltd.). This thesis addresses the ecological impacts of Rotstop biocontrol treatment on the mycoflora of conifer stumps. Locally, fungal communities within Rotstop-treated and untreated stumps were analyzed using a novel method based on DGGE profiling of small subunit ribosomal DNA fragments amplified directly from wood samples. Population analyses for P. gigantea and H. annosum s.l. were conducted to evaluate possible risks associated with local and/or global distribution of the Rotstop strain. Based on molecular community profiling by DGGE, we detected a few individual wood-inhabiting fungal species (OTUs) that seemed to have suffered or benefited from the Rotstop biocontrol treatment. The DGGE analyses also revealed fungal diversity not retrieved by cultivation and some fungal sequence types untypical for decomposing conifer wood. However, statistical analysis of DGGE community profiles obtained from Rotstop-treated and untreated conifer stumps revealed that the Rotstop treatment had not caused a statistically significant reduction in the species diversity of wood-inhabiting fungi within our experimental forest plots. Locally, ISSR genotyping of cultured P. gigantea strains showed that the Rotstop biocontrol strain was capable of surviving up to six years within treated Norway spruce stumps, while in Scots pine stumps it was sooner replaced by successor fungal species. In addition, the spread of resident P. gigantea strains into Rotstop-treated forest stands seemed effective in preventing the formation of genetically monomorphic populations in the short run. On a global scale, we detected a considerable level of genetic differentiation between the interfertile European and North American populations of P. gigantea. These results strongly suggest that local biocontrol strains should be used in order to prevent global spread of P. gigantea and hybrid formation between geographically isolated populations. The population analysis for H. annosum s.l. revealed a collection of Chinese fungal strains that showed a high degree of laboratory fertility with three different allopatric H. annosum s.l. taxa. However, based on the molecular markers, the Chinese strains could be clearly affiliated with the H. parviporum taxonomical cluster, which thus appears to have a continuous distribution range from Europe through southern Siberia to northern China. Keywords: Rotstop, wood decay, DGGE, ISSR fingerprinting, ribosomal DNA
Identification of a secretion signal for the type II protein secretion pathway in Erwinia carotovora
Resumo:
Plasma phospholipid transfer protein (PLTP) plays a crucial role in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT). It mediates the generation of pre-beta-HDL particles, enhances the cholesterol efflux from peripheral cells to pre-beta-HDL, and metabolically maintains the plasma HDL levels by facilitating the transfer of post-lipolytic surface remnants of triglyceride-rich lipoproteins to HDL. In addition to the antiatherogenic properties, recent findings indicate that PLTP has also proatherogenic characteristics, and that these opposite characteristics of PLTP are dependent on the site of PLTP expression and action. In human plasma, PLTP exists in a high-activity (HA-PLTP) and a low-activity form (LA-PLTP), which are associated with macromolecular complexes of different size and composition. The aims of this thesis were to isolate the two PLTP forms from human plasma, to characterize the molecular complexes in which the HA- and LA-PLTP reside, and to study the interactions of the PLTP forms with apolipoproteins (apo) and the ability of apolipoproteins to regulate PLTP activity. In addition, we aimed to study the distribution of the two PLTP forms in a Finnish population sample as well as to find possible regulatory factors for PLTP by investigating the influence of lipid and glucose metabolism on the balance between the HA- and LA-PLTP. For these purposes, an enzyme-linked immunosorbent assay (ELISA) capable of determining the serum total PLTP concentration and quantitating the two PLTP forms separately was developed. In this thesis, it was demonstrated that the HA-PLTP isolated from human plasma copurified with apoE, whereas the LA-PLTP formed a complex with apoA-I. The separation of these two PLTP forms was carried out by a dextran sulfate (DxSO4)-CaCl2 precipitation of plasma samples before the mass determination. A similar immunoreactivity of the two PLTP forms in the ELISA could be reached after a partial sample denaturation by SDS. Among normolipidemic Finnish individuals, the mean PLTP mass was 6.6 +/- 1.5 mg/l and the mean PLTP activity 6.6 +/- 1.7 umol/ml/h. Of the serum PLTP concentration, almost 50% represented HA-PLTP. The results indicate that plasma HDL levels could regulate PLTP concentration, while PLTP activity could be regulated by plasma triglyceride-rich very low-density lipoprotein (VLDL) concentration. Furthermore, new evidence is presented that PLTP could also play a role in glucose metabolism. Finally, both PLTP forms were found to interact with apoA-I, apoA-IV, and apoE. In addition, both apoE and apoA-IV, but not apoA-I, were capable of activating the LA-PLTP. These findings suggest that the distribution of the HA- and LA-PLTP in human plasma is subject to dynamic regulation by apolipoproteins.
Resumo:
The highly dynamic remodeling of the actin cytoskeleton is responsible for most motile and morphogenetic processes in all eukaryotic cells. In order to generate appropriate spatial and temporal movements, the actin dynamics must be under tight control of an array of actin binding proteins (ABPs). Many proteins have been shown to play a specific role in actin filament growth or disassembly of older filaments. Very little is known about the proteins affecting recycling i.e. the step where newly depolymerized actin monomers are funneled into new rounds of filament assembly. A central protein family involved in the regulation of actin turnover is cyclase-associated proteins (CAP, called Srv2 in budding yeast). This 50-60 kDa protein was first identified from yeast as a suppressor of an activated RAS-allele and a factor associated with adenylyl cyclase. The CAP proteins harbor N-terminal coiled-coil (cc) domain, originally identified as a site for adenylyl cyclase binding. In the N-terminal half is also a 14-3-3 like domain, which is followed by central proline-rich domains and the WH2 domain. In the C-terminal end locates the highly conserved ADP-G-actin binding domain. In this study, we identified two previously suggested but poorly characterized interaction partners for Srv2/CAP: profilin and ADF/cofilin. Profilins are small proteins (12-16 kDa) that bind ATP-actin monomers and promote the nucleotide exchange of actin. The profilin-ATP-actin complex can be directly targeted to the growth of the filament barbed ends capped by Ena/VASP or formins. ADF/cofilins are also small (13-19 kDa) and highly conserved actin binding proteins. They depolymerize ADP-actin monomers from filament pointed ends and remain bound to ADP-actin strongly inhibiting nucleotide exchange. We revealed that the ADP-actin-cofilin complex is able to directly interact with the 14-3-3 like domain at the N-terminal region of Srv2/CAP. The C-terminal high affinity ADP-actin binding site of Srv2/CAP competes with cofilin for an actin monomer. Cofilin can thus be released from Srv2/CAP for the subsequent round of depolymerization. We also revealed that profilin interacts with the first proline-rich region of Srv2/CAP and that the binding occurs simultaneously with ADP-actin binding to C-terminal domain of Srv2/CAP. Both profilin and Srv2/CAP can promote nucleotide exchange of actin monomer. Because profilin has much higher affinity to ATP-actin than Srv2/CAP, the ATP-actin-profilin complex is released for filament polymerization. While a disruption of cofilin binding in yeast Srv2/CAP produces a severe phenotype comparable to Srv2/CAP deletion, an impairment of profilin binding from Srv2/CAP results in much milder phenotype. This suggests that the interaction with cofilin is essential for the function of Srv2/CAP, whereas profilin can also promote its function without direct interaction with Srv2/CAP. We also show that two CAP isoforms with specific expression patterns are present in mice. CAP1 is the major isoform in most tissues, while CAP2 is predominantly expressed in muscles. Deletion of CAP1 from non-muscle cells results in severe actin phenotype accompanied with mislocalization of cofilin to cytoplasmic aggregates. Together these studies suggest that Srv2/CAP recycles actin monomers from cofilin to profilin and thus it plays a central role in actin dynamics in both yeast and mammalian cells.
Resumo:
Transposons, mobile genetic elements that are ubiquitous in all living organisms have been used as tools in molecular biology for decades. They have the ability to move into discrete DNA locations with no apparent homology to the target site. The utility of transposons as molecular tools is based on their ability to integrate into various DNA sequences efficiently, producing extensive mutant clone libraries that can be used in various molecular biology applications. Bacteriophage Mu is one of the most useful transposons due to its well-characterized and simple in vitro transposition reaction. This study establishes the properties of the Mu in vitro transposition system as a versatile multipurpose tool in molecular biology. In addition, this study describes Mu-based applications for engineering proteins by random insertional transposon mutagenesis in order to study structure-function relationships in proteins. We initially characterized the properties of the minimal Mu in vitro transposition system. We showed that the Mu transposition system works efficiently and accurately and produces insertions into a wide spectrum of target sites in different DNA molecules. Then, we developed a pentapeptide insertion mutagenesis strategy for inserting random five amino acid cassettes into proteins. These protein variants can be used especially for screening important sites for protein-protein interactions. Also, the system may produce temperature-sensitive variants of the protein of interest. Furthermore, we developed an efficient screening system for high-resolution mapping of protein-protein interfaces with the pentapeptide insertion mutagenesis. This was accomplished by combining the mutagenesis with subsequent yeast two-hybrid screening and PCR-based genetic footprinting. This combination allows the analysis of the whole mutant library en masse, without the need for producing or isolating separate mutant clones, and the protein-protein interfaces can be determined at amino acid accuracy. The system was validated by analysing the interacting region of JFC1 with Rab8A, and we show that the interaction is mediated via the JFC1 Slp homology domain. In addition, we developed a procedure for the production of nested sets of N- and C-terminal deletion variants of proteins with the Mu system. These variants are useful in many functional studies of proteins, especially in mapping regions involved in protein-protein interactions. This methodology was validated by analysing the region in yeast Mso1 involved in an interaction with Sec1. The results of this study show that the Mu in vitro transposition system is versatile for various applicational purposes and can efficiently be adapted to random protein engineering applications for functional studies of proteins.