42 resultados para computational biology
Resumo:
Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.
Resumo:
Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.
Resumo:
Nucleation is the first step in the formation of a new phase inside a mother phase. Two main forms of nucleation can be distinguished. In homogeneous nucleation, the new phase is formed in a uniform substance. In heterogeneous nucleation, on the other hand, the new phase emerges on a pre-existing surface (nucleation site). Nucleation is the source of about 30% of all atmospheric aerosol which in turn has noticeable health effects and a significant impact on climate. Nucleation can be observed in the atmosphere, studied experimentally in the laboratory and is the subject of ongoing theoretical research. This thesis attempts to be a link between experiment and theory. By comparing simulation results to experimental data, the aim is to (i) better understand the experiments and (ii) determine where the theory needs improvement. Computational fluid dynamics (CFD) tools were used to simulate homogeneous onecomponent nucleation of n-alcohols in argon and helium as carrier gases, homogeneous nucleation in the water-sulfuric acid-system, and heterogeneous nucleation of water vapor on silver particles. In the nucleation of n-alcohols, vapor depletion, carrier gas effect and carrier gas pressure effect were evaluated, with a special focus on the pressure effect whose dependence on vapor and carrier gas properties could be specified. The investigation of nucleation in the water-sulfuric acid-system included a thorough analysis of the experimental setup, determining flow conditions, vapor losses, and nucleation zone. Experimental nucleation rates were compared to various theoretical approaches. We found that none of the considered theoretical descriptions of nucleation captured the role of water in the process at all relative humidities. Heterogeneous nucleation was studied in the activation of silver particles in a TSI 3785 particle counter which uses water as its working fluid. The role of the contact angle was investigated and the influence of incoming particle concentrations and homogeneous nucleation on counting efficiency determined.
Resumo:
This work belongs to the field of computational high-energy physics (HEP). The key methods used in this thesis work to meet the challenges raised by the Large Hadron Collider (LHC) era experiments are object-orientation with software engineering, Monte Carlo simulation, the computer technology of clusters, and artificial neural networks. The first aspect discussed is the development of hadronic cascade models, used for the accurate simulation of medium-energy hadron-nucleus reactions, up to 10 GeV. These models are typically needed in hadronic calorimeter studies and in the estimation of radiation backgrounds. Various applications outside HEP include the medical field (such as hadron treatment simulations), space science (satellite shielding), and nuclear physics (spallation studies). Validation results are presented for several significant improvements released in Geant4 simulation tool, and the significance of the new models for computing in the Large Hadron Collider era is estimated. In particular, we estimate the ability of the Bertini cascade to simulate Compact Muon Solenoid (CMS) hadron calorimeter HCAL. LHC test beam activity has a tightly coupled cycle of simulation-to-data analysis. Typically, a Geant4 computer experiment is used to understand test beam measurements. Thus an another aspect of this thesis is a description of studies related to developing new CMS H2 test beam data analysis tools and performing data analysis on the basis of CMS Monte Carlo events. These events have been simulated in detail using Geant4 physics models, full CMS detector description, and event reconstruction. Using the ROOT data analysis framework we have developed an offline ANN-based approach to tag b-jets associated with heavy neutral Higgs particles, and we show that this kind of NN methodology can be successfully used to separate the Higgs signal from the background in the CMS experiment.
Resumo:
Nucleation is the first step of a first order phase transition. A new phase is always sprung up in nucleation phenomena. The two main categories of nucleation are homogeneous nucleation, where the new phase is formed in a uniform substance, and heterogeneous nucleation, when nucleation occurs on a pre-existing surface. In this thesis the main attention is paid on heterogeneous nucleation. This thesis wields the nucleation phenomena from two theoretical perspectives: the classical nucleation theory and the statistical mechanical approach. The formulation of the classical nucleation theory relies on equilibrium thermodynamics and use of macroscopically determined quantities to describe the properties of small nuclei, sometimes consisting of just a few molecules. The statistical mechanical approach is based on interactions between single molecules, and does not bear the same assumptions as the classical theory. This work gathers up the present theoretical knowledge of heterogeneous nucleation and utilizes it in computational model studies. A new exact molecular approach on heterogeneous nucleation was introduced and tested by Monte Carlo simulations. The results obtained from the molecular simulations were interpreted by means of the concepts of the classical nucleation theory. Numerical calculations were carried out for a variety of substances nucleating on different substances. The classical theory of heterogeneous nucleation was employed in calculations of one-component nucleation of water on newsprint paper, Teflon and cellulose film, and binary nucleation of water-n-propanol and water-sulphuric acid mixtures on silver nanoparticles. The results were compared with experimental results. The molecular simulation studies involved homogeneous nucleation of argon and heterogeneous nucleation of argon on a planar platinum surface. It was found out that the use of a microscopical contact angle as a fitting parameter in calculations based on the classical theory of heterogeneous nucleation leads to a fair agreement between the theoretical predictions and experimental results. In the presented cases the microscopical angle was found to be always smaller than the contact angle obtained from macroscopical measurements. Furthermore, molecular Monte Carlo simulations revealed that the concept of the geometrical contact parameter in heterogeneous nucleation calculations can work surprisingly well even for very small clusters.
Resumo:
A repetitive sequence collection is one where portions of a base sequence of length n are repeated many times with small variations, forming a collection of total length N. Examples of such collections are version control data and genome sequences of individuals, where the differences can be expressed by lists of basic edit operations. Flexible and efficient data analysis on a such typically huge collection is plausible using suffix trees. However, suffix tree occupies O(N log N) bits, which very soon inhibits in-memory analyses. Recent advances in full-text self-indexing reduce the space of suffix tree to O(N log σ) bits, where σ is the alphabet size. In practice, the space reduction is more than 10-fold, for example on suffix tree of Human Genome. However, this reduction factor remains constant when more sequences are added to the collection. We develop a new family of self-indexes suited for the repetitive sequence collection setting. Their expected space requirement depends only on the length n of the base sequence and the number s of variations in its repeated copies. That is, the space reduction factor is no longer constant, but depends on N / n. We believe the structures developed in this work will provide a fundamental basis for storage and retrieval of individual genomes as they become available due to rapid progress in the sequencing technologies.
Resumo:
Recently it has been recognized that evolutionary aspects play a major role in conservation issues of a species. In this thesis I have combined evolutionary research with conservation studies to provide new insight into these fields. The study object of this thesis is the house sparrow, a species that has features that makes it interesting for this type of study. The house sparrow has been ubiquitous almost all over the world. Even though being still abundant, several countries have reported major declines. These declines have taken place in a relatively short time covering both urban and rural habitats. In Finland this species has declined by more than two thirds in just over two decades. In addition, as the house sparrow lives only in human inhabited areas it can also raise public awareness to conservation issues. I used both an extensive museum collection of house sparrows collected in 1980s from all over Finland as well as samples collected in 2009 from 12 of the previously collected localities. I used molecular techniques to study neutral genetic variation within and genetic differentiation between the study populations. This knowledge I then combined with data gathered on morphometric measurements. In addition I analyzed eight heavy metals from the livers of house sparrows that lived in either rural or urban areas in the 1980s and evaluated the role of heavy metal pollution as a possible cause of the declines. Even though dispersal of house sparrows is limited I found that just as the declines started in 1980s the house sparrows formed a genetically panmictic population on the scale of the whole Finland. When compared to Norway, where neutral genetic divergence has been found even with small geographic distances, I concluded that this difference would be due to contrasting landscapes. In Finland the landscape is rather homogeneous facilitating the movements of these birds and maintaining gene flow even with the low dispersal. To see whether the declines have had an effect on the neutral genetic variation of the populations I did a comparison between the historical and contemporary genetic data. I showed that even though genetic diversity has not decreased due to the drastic declines the populations have indeed become more differentiated from each other. This shows that even in a still quite abundant species the declines can have an effect on the genetic variation. It is shown that genetic diversity and differentiation may approach their new equilibriums at different rates. This emphasizes the importance of studying both of them and if the latter has increased it should be taken as a warning sign of a possible loss of genetic diversity in the future. One of the factors suggested to be responsible for the house sparrow declines is heavy metal pollution. When studying the livers of house sparrows from 1980s I discovered higher levels of heavy metal concentrations in urban than rural habitats, but the levels of the metals were comparatively low and based on that heavy metal pollution does not seem to be a direct cause for the declines in Finland. However, heavy metals are known to decrease the amount of insects in urban areas and thus in the cities heavy metals may have an indirect effect on house sparrows. Although neutral genetic variation is an important tool for conservation genetics it does not tell the whole story. Since neutral genetic variation is not affected by selection, information can be one-sided. It is possible that even neutral genetic differentiation is low, there can be substantial variation in additive genetic traits indicating local adaptation. Therefore I performed a comparison between neutral genetic differentiation and phenotypic differentiation. I discovered that two traits out of seven are likely to be under directional selection, whereas the others could be affected by random genetic drift. Bergmann s rule may be behind the observed directional selection in wing length and body mass. These results highlight the importance of estimating both neutral and adaptive genetic variation.
Resumo:
Molecular machinery on the micro-scale, believed to be the fundamental building blocks of life, involve forces of 1-100 pN and movements of nanometers to micrometers. Micromechanical single-molecule experiments seek to understand the physics of nucleic acids, molecular motors, and other biological systems through direct measurement of forces and displacements. Optical tweezers are a popular choice among several complementary techniques for sensitive force-spectroscopy in the field of single molecule biology. The main objective of this thesis was to design and construct an optical tweezers instrument capable of investigating the physics of molecular motors and mechanisms of protein/nucleic-acid interactions on the single-molecule level. A double-trap optical tweezers instrument incorporating acousto-optic trap-steering, two independent detection channels, and a real-time digital controller was built. A numerical simulation and a theoretical study was performed to assess the signal-to-noise ratio in a constant-force molecular motor stepping experiment. Real-time feedback control of optical tweezers was explored in three studies. Position-clamping was implemented and compared to theoretical models using both proportional and predictive control. A force-clamp was implemented and tested with a DNA-tether in presence of the enzyme lambda exonuclease. The results of the study indicate that the presented models describing signal-to-noise ratio in constant-force experiments and feedback control experiments in optical tweezers agree well with experimental data. The effective trap stiffness can be increased by an order of magnitude using the presented position-clamping method. The force-clamp can be used for constant-force experiments, and the results from a proof-of-principle experiment, in which the enzyme lambda exonuclease converts double-stranded DNA to single-stranded DNA, agree with previous research. The main objective of the thesis was thus achieved. The developed instrument and presented results on feedback control serve as a stepping stone for future contributions to the growing field of single molecule biology.
Resumo:
Inelastic x-ray scattering spectroscopy is a versatile experimental technique for probing the electronic structure of materials. It provides a wealth of information on the sample's atomic-scale structure, but extracting this information from the experimental data can be challenging because there is no direct relation between the structure and the measured spectrum. Theoretical calculations can bridge this gap by explaining the structural origins of the spectral features. Reliable methods for modeling inelastic x-ray scattering require accurate electronic structure calculations. This work presents the development and implementation of new schemes for modeling the inelastic scattering of x-rays from non-periodic systems. The methods are based on density functional theory and are applicable for a wide variety of molecular materials. Applications are presented in this work for amorphous silicon monoxide and several gas phase systems. Valuable new information on their structure and properties could be extracted with the combination of experimental and computational methods.
Resumo:
This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}