36 resultados para COMPARATIVE GENOME MAPS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing interest for sequencing with higher throughput in the last decade has led to the development of new sequencing applications. This thesis concentrates on optimizing DNA library preparation for Illumina Genome Analyzer II sequencer. The library preparation steps that were optimized include fragmentation, PCR purification and quantification. DNA fragmentation was performed with focused sonication in different concentrations and durations. Two column based PCR purification method, gel matrix method and magnetic bead based method were compared. Quantitative PCR and gel electrophoresis in a chip were compared for DNA quantification. The magnetic bead purification was found to be the most efficient and flexible purification method. The fragmentation protocol was changed to produce longer fragments to be compatible with longer sequencing reads. Quantitative PCR correlates better with the cluster number and should thus be considered to be the default quantification method for sequencing. As a result of this study more data have been acquired from sequencing with lower costs and troubleshooting has become easier as qualification steps have been added to the protocol. New sequencing instruments and applications will create a demand for further optimizations in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigates the impacts of agricultural market liberalization on food security in developing countries and it evaluates the supply perspective of food security. This research theme is applied on the agricultural sector in Kenya and in Zambia by studying the role policies played in the maize sub-sector. An evaluation of selected policies introduced at the beginning of the 1980s is made, as well as an assessment of whether those policies influenced maize output. A theoretical model of agricultural production is then formulated to reflect cereal production in a developing country setting. This study begins with a review of the general framework and the aims of the structural adjustment programs and proceeds to their application in the maize sector in Kenya and Zambia. A literature review of the supply and demand synthesis of food security is presented with examples from various developing countries. Contrary to previous studies on food security, this study assesses two countries with divergent economic orientations. Agricultural sector response to economic and institutional policies in different settings is also evaluated. Finally, a dynamic time series econometric model is applied to assess the effects of policy on maize output. The empirical findings suggest a weak policy influence on maize output, but the precipitation and acreage variables stand out as core determinants of maize output. The policy dimension of acreage and how markets influence it is not discussed at length in this study. Due to weak land rights and tenure structures in these countries, the direct impact of policy change on land markets cannot be precisely measured. Recurring government intervention during the structural policy implementation period impeded efficient functioning of input and output markets, particularly in Zambia. Input and output prices of maize and fertilizer responded more strongly in Kenya than in Zambia, where the state often ceded to public pressure by revoking pertinent policy measures. These policy interpretations are based on the response of policy variables which are more responsive in Kenya than in Zambia. According the obtained regression results, agricultural markets in general, and the maize sub-sector in particular, responded more positively to implemented policies in Kenya, than in Zambia, which supported a more socialist economic system. It is observed in these results that in order for policies to be effective, sector and regional dimensions need to be considered. The regional and sector dimensions were not taken into account in the formulation and implementation of structural adjustment policies in the 1980s. It can be noted that countries with vibrant economic structures and institutions fared better than those which had a firm, socially founded system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders whose etiology and molecular pathogenesis are poorly understood. During the past decade, enormous developments in microarray technology and bioinformatics methods have made it possible to mine novel molecular alterations in a large number of malignancies, including MPN and MDS, which has facilitated the detection of new prognostic, predictive and therapeutic biomarkers for disease stratification. By applying novel microarray techniques, we profiled copy number alterations and microRNA (miRNA) expression changes in bone marrow aspirate and blood samples. In addition, we set up and validated an miRNA expression test for bone marrow core biopsies in order to utilize the large archive material available in many laboratories. We also tested JAK2 mutation status and compare it with the in vitro growth pattern of hematologic progenitors cells. In the study focusing on 100 MPN cases, we detected a Janus kinase 2 (JAK2) mutation in 71 cases. We observed spontaneous erythroid colony growth in all mutation-positive cases in addition to nine mutation negative cases. Interestingly, seven JAK2V167F negative ET cases showed spontaneous megakaryocyte colony formation, one case of which also harbored a myeloproliferative leukemia virus oncogene (MPL) mutation. We studied copy number alterations in 35 MPN and 37 MDS cases by using oligonucleotide-based array comparative hybridization (array CGH). Only one essential thrombocythemia (ET) case presented copy number alterations in chromosomes 1q and 13q. In contrast, MDS cases were characterized by numerous novel cryptic chromosomal aberrations with the most common copy number losses at 5q21.3q33.1 and 7q22.1q33, while the most common copy number gain was trisomy 8. As for the study of the bone marrow core biopsy samples, we showed that even though these samples were embedded in paraffin and underwent decalcification, they were reliable sources of miRNA and suitable for array expression analysis. Further, when studying the miRNA expression profiles of the 19 MDS cases, we found that, compared to controls, two miRNAs (one human Epstein-Barr virus (miR-BART13) miRNA and one human (has-miR-671-5p) miRNA) were downregulated, whereas two other miRNAs (hsa-miR-720 and hsa-miR-21) were upregulated. However, we could find no correlation between copy number alterations and microRNA expression when integrating these two data. This thesis brings to light new information about genomic changes implicated in the development of MPN and MDS, and also underlines the power of applying genome-wide array screening techniques in neoplasias. Rapid advances in molecular techniques and the integration of different genomic data will enable the discovery of the biological contexts of many complex disorders, including myeloid neoplasias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XVIII IUFRO World Congress, Ljubljana 1986.