33 resultados para duration, functional delta method, gamma kernel, hazard rate.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transposons are mobile elements of genetic material that are able to move in the genomes of their host organisms using a special form of recombination called transposition. Bacteriophage Mu was the first transposon for which a cell-free in vitro transposition reaction was developed. Subsequently, the reaction has been refined and the minimal Mu in vitro reaction is useful in the generation of comprehensive libraries of mutant DNA molecules that can be used in a variety of applications. To date, the functional genetics applications of Mu in vitro technology have been subjected to either plasmids or genomic regions and entire genomes of viruses cloned on specific vectors. This study expands the use of Mu in vitro transposition in functional genetics and genomics by describing novel methods applicable to the targeted transgenesis of mouse and the whole-genome analysis of bacteriophages. The methods described here are rapid, efficient, and easily applicable to a wide variety of organisms, demonstrating the potential of the Mu transposition technology in the functional analysis of genes and genomes. First, an easy-to-use, rapid strategy to generate construct for the targeted mutagenesis of mouse genes was developed. To test the strategy, a gene encoding a neuronal K+/Cl- cotransporter was mutagenised. After a highly efficient transpositional mutagenesis, the gene fragments mutagenised were cloned into a vector backbone and transferred into bacterial cells. These constructs were screened with PCR using an effective 3D matrix system. In addition to traditional knock-out constructs, the method developed yields hypomorphic alleles that lead into reduced expression of the target gene in transgenic mice and have since been used in a follow-up study. Moreover, a scheme is devised to rapidly produce conditional alleles from the constructs produced. Next, an efficient strategy for the whole-genome analysis of bacteriophages was developed based on the transpositional mutagenesis of uncloned, infective virus genomes and their subsequent transfer into susceptible host cells. Mutant viruses able to produce viable progeny were collected and their transposon integration sites determined to map genomic regions nonessential to the viral life cycle. This method, applied here to three very different bacteriophages, PRD1, ΦYeO3 12, and PM2, does not require the target genome to be cloned and is directly applicable to all DNA and RNA viruses that have infective genomes. The method developed yielded valuable novel information on the three bacteriophages studied and whole-genome data can be complemented with concomitant studies on individual genes. Moreover, end-modified transposons constructed for this study can be used to manipulate genomes devoid of suitable restriction sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Population dynamics are generally viewed as the result of intrinsic (purely density dependent) and extrinsic (environmental) processes. Both components, and potential interactions between those two, have to be modelled in order to understand and predict dynamics of natural populations; a topic that is of great importance in population management and conservation. This thesis focuses on modelling environmental effects in population dynamics and how effects of potentially relevant environmental variables can be statistically identified and quantified from time series data. Chapter I presents some useful models of multiplicative environmental effects for unstructured density dependent populations. The presented models can be written as standard multiple regression models that are easy to fit to data. Chapters II IV constitute empirical studies that statistically model environmental effects on population dynamics of several migratory bird species with different life history characteristics and migration strategies. In Chapter II, spruce cone crops are found to have a strong positive effect on the population growth of the great spotted woodpecker (Dendrocopos major), while cone crops of pine another important food resource for the species do not effectively explain population growth. The study compares rate- and ratio-dependent effects of cone availability, using state-space models that distinguish between process and observation error in the time series data. Chapter III shows how drought, in combination with settling behaviour during migration, produces asymmetric spatially synchronous patterns of population dynamics in North American ducks (genus Anas). Chapter IV investigates the dynamics of a Finnish population of skylark (Alauda arvensis), and point out effects of rainfall and habitat quality on population growth. Because the skylark time series and some of the environmental variables included show strong positive autocorrelation, the statistical significances are calculated using a Monte Carlo method, where random autocorrelated time series are generated. Chapter V is a simulation-based study, showing that ignoring observation error in analyses of population time series data can bias the estimated effects and measures of uncertainty, if the environmental variables are autocorrelated. It is concluded that the use of state-space models is an effective way to reach more accurate results. In summary, there are several biological assumptions and methodological issues that can affect the inferential outcome when estimating environmental effects from time series data, and that therefore need special attention. The functional form of the environmental effects and potential interactions between environment and population density are important to deal with. Other issues that should be considered are assumptions about density dependent regulation, modelling potential observation error, and when needed, accounting for spatial and/or temporal autocorrelation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dispersal is a highly important life history trait. In fragmented landscapes the long-term persistence of populations depends on dispersal. Evolution of dispersal is affected by costs and benefits and these may differ between different landscapes. This results in differences in the strength and direction of natural selection on dispersal in fragmented landscapes. Dispersal has been shown to be a nonrandom process that is associated with traits such as flight ability in insects. This thesis examines genetic and physiological traits affecting dispersal in the Glanville fritillary butterfly (Melitaea cinxia). Flight metabolic rate is a repeatable trait representing flight ability. Unlike in many vertebrates, resting metabolic rate cannot be used as a surrogate of maximum metabolic rate as no strong correlation between the two was found in the Glanville fritillary. Resting and flight metabolic rate are affected by environmental variables, most notably temperature. However, only flight metabolic rate has a strong genetic component. Molecular variation in the much-studied candidate locus phosphoglucose isomerase (Pgi), which encodes the glycolytic enzyme PGI, has an effect on carbohydrate metabolism in flight. This effect is temperature dependent: in low to moderate temperatures individuals with the heterozygous genotype at the single nucleotide polymorphism (SNP) AA111 have higher flight metabolic rate than the common homozygous genotype. At high temperatures the situation is reversed. This finding suggests that variation in enzyme properties is indeed translated to organismal performance. High-resolution data on individual female Glanville fritillaries moving freely in the field were recorded using harmonic radar. There was a strong positive correlation between flight metabolic rate and dispersal rate. Flight metabolic rate explained one third of the observed variation in the one-hour movement distance. A fine-scaled analysis of mobility showed that mobility peaked at intermediate ambient temperatures but the two common Pgi genotypes differed in their reaction norms to temperature. As with flight metabolic rate, heterozygotes at SNP AA111 were the most active genotype in low to moderate temperatures. The results show that molecular variation is associated with variation in dispersal rate through the link of flight physiology under the influence of environmental conditions. The evolutionary pressures for dispersal differ between males and females. The effect of flight metabolic rate on dispersal was examined in both sexes in field and laboratory conditions. The relationship between flight metabolic rate and dispersal rate in the field and flight duration in the laboratory were found to differ between the two sexes. In females the relationship was positive, but in males the longest distances and flight durations were recorded for individuals with low flight metabolic rate. These findings may reflect male investment in mate locating. Instead of dispersing, males with high flight metabolic rate may establish territories and follow a perching strategy when locating females and hence move less on the landscape level. Males with low metabolic rate may be forced to disperse due to low competitive success or may show adaptations to an alternative strategy: patrolling. In the light of life history trade-offs and the rate of living theory having high metabolic rate may carry a cost in the form of shortened lifespan. Experiments relating flight metabolic rate to longevity showed a clear correlation in the opposite direction: high flight metabolic rate was associated with long lifespan. This suggests that individuals with high metabolic rate do not pay an extra physiological cost for their high flight capacity, rather there are positive correlations between different measures of fitness. These results highlight the importance of condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis focuses on mutations of POLG1 gene encoding catalytic subunit polγ-α of mitochondrial DNA polymerase gamma holoenzyme (polG) and the association of mutations with different clinical phenotypes. In addition, particular defective mutant variants of the protein were characterized biochemically in vitro. PolG-holoenzyme is the sole DNA polymerase found in mitochondria. It is involved in replication and repair of the mitochondrial genome, mtDNA. Holoenzyme also includes the accessory subunit polγ-β, which is required for the enhanced processivity of polγ-α. Defective polγ-α causes accumulation of secondary mutations on mtDNA, which leads to a defective oxidative phosphorylation system. The clinical consequences of such mutations are variable, affecting nervous system, skeletal muscles, liver and other post-mitotic tissues. The aims of the studies included: 1) Determination of the role of POLG1 mutations in neurological syndromes with features of mitochondrial dysfunction and an unknown molecular cause. 2) Development and set up of diagnostic tests for routine clinical purposes. 3) Biochemical characterization of the functional consequences of the identified polγ-α variants. Studies describe new neurological phenotypes in addition to PEO caused by POLG1 mutations, including parkinsonism, premature amenorrhea, ataxia and Parkinson s disease (PD). POLG1 mutations and polymorphisms are both common and/or potential genetic risk factors at least among the Finnish population. The major findings and applications reported here are: 1) POLG1 mutations cause parkinsonism and premature menopause in PEO families in either a recessive or a dominant manner. 2) A common recessive POLG1 mutations (A467T and W748S) in the homozygous state causes severe adult or juvenile-onset ataxia without muscular symptoms or histological or mtDNA abnormalities in muscles. 3) A common recessive pathogenic change A467T can also cause a mild dominant disease in heterozygote carriers. 4) The A467T variant shows reduced polymerase activity due to defective template binding. 5) Rare polyglutamine tract length variants of POLG1 are significantly enriched in Finnish idiopathic Parkinson s disease patients. 6) Dominant mutations are clearly restricted to the highly conserved polymerase domain motifs, whereas recessive ones are more evenly distributed along the protein. The present results highlight and confirm the new role of mitochondria in parkinsonism/Parkinson s disease and describe a new mitochondrial ataxia. Based on these results, a POLG1 diagnostic routine has been set up in Helsinki University Central Hospital (HUSLAB).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is one part of a collaborative depression research project, the Vantaa Depression Study (VDS), involving the Department of Mental and Alcohol Research of the National Public Health Institute, Helsinki, and the Department of Psychiatry of the Peijas Medical Care District (PMCD), Vantaa, Finland. The VDS includes two parts, a record-based study consisting of 803 patients, and a prospective, naturalistic cohort study of 269 patients. Both studies include secondary-level care psychiatric out- and inpatients with a new episode of major depressive disorder (MDD). Data for the record-based part of the study came from a computerised patient database incorporating all outpatient visits as well as treatment periods at the inpatient unit. We included all patients aged 20 to 59 years old who had been assigned a clinical diagnosis of depressive episode or recurrent depressive disorder according to the International Classification of Diseases, 10th edition (ICD-10) criteria and who had at least one outpatient visit or day as an inpatient in the PMCD during the study period January 1, 1996, to December 31, 1996. All those with an earlier diagnosis of schizophrenia, other non-affective psychosis, or bipolar disorder were excluded. Patients treated in the somatic departments of Peijas Hospital and those who had consulted but not received treatment from the psychiatric consultation services were excluded. The study sample comprised 290 male and 513 female patients. All their psychiatric records were reviewed and each patient completed a structured form with 57 items. The treatment provided was reviewed up to the end of the depression episode or to the end of 1997. Most (84%) of the patients received antidepressants, including a minority (11%) on treatment with clearly subtherapeutic low doses. During the treatment period the depressed patients investigated averaged only a few visits to psychiatrists (median two visits), but more to other health professionals (median seven). One-fifth of both genders were inpatients, with a mean of nearly two inpatient treatment periods during the overall treatment period investigated. The median length of a hospital stay was 2 weeks. Use of antidepressants was quite conservative: The first antidepressant had been switched to another compound in only about one-fifth (22%) of patients, and only two patients had received up to five antidepressant trials. Only 7% of those prescribed any antidepressant received two antidepressants simultaneously. None of the patients was prescribed any other augmentation medication. Refusing antidepressant treatment was the most common explanation for receiving no antidepressants. During the treatment period, 19% of those not already receiving a disability pension were granted one due to psychiatric illness. These patients were nearly nine years older than those not pensioned. They were also more severely ill, made significantly more visits to professionals and received significantly more concomitant medications (hypnotics, anxiolytics, and neuroleptics) than did those receiving no pension. In the prospective part of the VDS, 806 adult patients were screened (aged 20-59 years) in the PMCD for a possible new episode of DSM-IV MDD. Of these, 542 patients were interviewed face-to-face with the WHO Schedules for Clinical Assessment in Neuropsychiatry (SCAN), Version 2.0. Exclusion criteria were the same as in the record-based part of the VDS. Of these, 542 269 patients fulfiled the criteria of DSM-IV MDE. This study investigated factors associated with patients' functional disability, social adjustment, and work disability (being on sick-leave or being granted a disability pension). In the beginning of the treatment the most important single factor associated with overall social and functional disability was found to be severity of depression, but older age and personality disorders also significantly contributed. Total duration and severity of depression, phobic disorders, alcoholism, and personality disorders all independently contributed to poor social adjustment. Of those who were employed, almost half (43%) were on sick-leave. Besides severity and number of episodes of depression, female gender and age over 50 years strongly and independently predicted being on sick-leave. Factors influencing social and occupational disability and social adjustment among patients with MDD were studied prospectively during an 18-month follow-up period. Patients' functional disability and social adjustment were alleviated during the follow-up concurrently with recovery from depression. The current level of functioning and social adjustment of a patient with depression was predicted by severity of depression, recurrence before baseline and during follow-up, lack of full remission, and time spent depressed. Comorbid psychiatric disorders, personality traits (neuroticism), and perceived social support also had a significant influence. During the 18-month follow-up period, of the 269, 13 (5%) patients switched to bipolar disorder, and 58 (20%) dropped out. Of the 198, 186 (94%) patients were at baseline not pensioned, and they were investigated. Of them, 21 were granted a disability pension during the follow-up. Those who received a pension were significantly older, more seldom had vocational education, and were more often on sick-leave than those not pensioned, but did not differ with regard to any other sociodemographic or clinical factors. Patients with MDD received mostly adequate antidepressant treatment, but problems existed in treatment intensity and monitoring. It is challenging to find those at greatest risk for disability and to provide them adequate and efficacious treatment. This includes great challenges to the whole society to provide sufficient resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oral cancer ranks among the 10 most common cancers worldwide. Since it is commonly diagnosed at locally advanced stage, curing the cancer demands extensive tissue resection. The emergent defect is reconstructed generally with a free flap transfer. Repair of the upper aerodigestive track with maintenance of its multiform activities is challenging. The aim of the study was to extract comprehensive treatment outcomes for patients having undergone microvascular free flap transfer because of large oral cavity or pharyngeal cancer. Ninety-four patients were analyzed for postoperative survival and complications. Forty-four patients were followed-up and analyzed for functional outcome, which was determined in terms of quality of life, speech, swallowing, and intraoral sensation. Quality of life was assessed using the University of Washington Head and Neck Questionnaire. Speech was analyzed for aerodynamic parameters and for nasal acoustic energy, as well as perceptually for articulatory proficiency, voice quality, and intelligibility. Videofluorography was performed to determine the swallowing ability. Intraoral sensation was measured by moving 2-point discrimination. The 3-year overall survival was over 40%. The 1-year disease-free survival was 43%. Postoperative complications arose in over half of the patients. Flap success rate was high. Perioperative mortality varied between 2% and 11%. Unemployment and heavy drinking were the strongest predictors of survival. Sociodemographic factors were found to associate with quality of life. The global quality of life score deteriorated and did not return to the preoperative level. Significant reduction was detectable in the domains measuring chewing and speech, and in appearance and shoulder function. The basic elements necessary for normal speech were maintained. Speech intelligibility reduced and was related to the misarticulations of the /r/ and /s/ phonemes. Deviant /r/ and /s/ persisted in most patients. Hoarseness and hypernasality occurred infrequently. One year postoperatively, 98% of the patients had achieved oral nutrition and half of them were on a regular masticated diet. Overt and silent aspiration was encountered throughout the follow-up. At 12-month swallow test, 44% of the patients aspirated, 70% of whom silently. Of these patients, 15% presented with pulmonary changes referring to aspiration. Intraoral sensation weakened but was unrelated to oral functions. The results provide new data for oral reconstructions and highlight the importance of the functional outcome of the treatment for an oral cancer patient. The mouth and the pharynx encompass a unit of utmost functional complexity. Surgery should continue to make progress in this area, and methods that lead to good function should be developed. Operational outcome should always be evaluated in terms of function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main obstacle for the application of high quality diamond-like carbon (DLC) coatings has been the lack of adhesion to the substrate as the coating thickness is increased. The aim of this study was to improve the filtered pulsed arc discharge (FPAD) method. With this method it is possible to achieve high DLC coating thicknesses necessary for practical applications. The energy of the carbon ions was measured with an optoelectronic time-of-flight method. An in situ cathode polishing system used for stabilizing the process yield and the carbon ion energies is presented. Simultaneously the quality of the coatings can be controlled. To optimise the quality of the deposition process a simple, fast and inexpensive method using silicon wafers as test substrates was developed. This method was used for evaluating the suitability of a simplified arc-discharge set-up for the deposition of the adhesion layer of DLC coatings. A whole new group of materials discovered by our research group, the diamond-like carbon polymer hybrid (DLC-p-h) coatings, is also presented. The parent polymers used in these novel coatings were polydimethylsiloxane (PDMS) and polytetrafluoroethylene (PTFE). The energy of the plasma ions was found to increase when the anode-cathode distance and the arc voltage were increased. A constant deposition rate for continuous coating runs was obtained with an in situ cathode polishing system. The novel DLC-p-h coatings were found to be water and oil repellent and harder than any polymers. The lowest sliding angle ever measured from a solid surface, 0.15 ± 0.03°, was measured on a DLC-PDMS-h coating. In the FPAD system carbon ions can be accelerated to high energies (≈ 1 keV) necessary for the optimal adhesion (the substrate is broken in the adhesion and quality test) of ultra thick (up to 200 µm) DLC coatings by increasing the anode-cathode distance and using high voltages (up to 4 kV). An excellent adhesion can also be obtained with the simplified arc-discharge device. To maintain high process yield (5µm/h over a surface area of 150 cm2) and to stabilize the carbon ion energies and the high quality (sp3 fraction up to 85%) of the resulting coating, an in situ cathode polishing system must be used. DLC-PDMS-h coating is the superior candidate coating material for anti-soiling applications where also hardness is required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spirometry is the most widely used lung function test in the world. It is fundamental in diagnostic and functional evaluation of various pulmonary diseases. In the studies described in this thesis, the spirometric assessment of reversibility of bronchial obstruction, its determinants, and variation features are described in a general population sample from Helsinki, Finland. This study is a part of the FinEsS study, which is a collaborative study of clinical epidemiology of respiratory health between Finland (Fin), Estonia (Es), and Sweden (S). Asthma and chronic obstructive pulmonary disease (COPD) constitute the two major obstructive airways diseases. The prevalence of asthma has increased, with around 6% of the population in Helsinki reporting physician-diagnosed asthma. The main cause of COPD is smoking with changes in smoking habits in the population affecting its prevalence with a delay. Whereas airway obstruction in asthma is by definition reversible, COPD is characterized by fixed obstruction. Cough and sputum production, the first symptoms of COPD, are often misinterpreted for smokers cough and not recognized as first signs of a chronic illness. Therefore COPD is widely underdiagnosed. More extensive use of spirometry in primary care is advocated to focus smoking cessation interventions on populations at risk. The use of forced expiratory volume in six seconds (FEV6) instead of forced vital capacity (FVC) has been suggested to enable office spirometry to be used in earlier detection of airflow limitation. Despite being a widely accepted standard method of assessment of lung function, the methodology and interpretation of spirometry are constantly developing. In 2005, the ATS/ERS Task Force issued a joint statement which endorsed the 12% and 200 ml thresholds for significant change in forced expiratory volume in one second (FEV1) or FVC during bronchodilation testing, but included the notion that in cases where only FVC improves it should be verified that this is not caused by a longer exhalation time in post-bronchodilator spirometry. This elicited new interest in the assessment of forced expiratory time (FET), a spirometric variable not usually reported or used in assessment. In this population sample, we examined FET and found it to be on average 10.7 (SD 4.3) s and to increase with ageing and airflow limitation in spirometry. The intrasession repeatability of FET was the poorest of the spirometric variables assessed. Based on the intrasession repeatability, a limit for significant change of 3 s was suggested for FET during bronchodilation testing. FEV6 was found to perform equally well as FVC in the population and in a subgroup of subjects with airways obstruction. In the bronchodilation test, decreases were frequently observed in FEV1 and particularly in FVC. The limit of significant increase based on the 95th percentile of the population sample was 9% for FEV1 and 6% for FEV6 and FVC; these are slightly lower than the current limits for single bronchodilation tests (ATS/ERS guidelines). FEV6 was proven as a valid alternative to FVC also in the bronchodilation test and would remove the need to control duration of exhalation during the spirometric bronchodilation test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the diseases affecting public health, like hypertension, are multifactorial by etiology. Hypertension is influenced by genetic, life style and environmental factors. Estimation of the influence of genes to the risk of essential hypertension varies from 30 to 50%. It is plausible that in most of the cases susceptibility to hypertension is determined by the action of more than one gene. Although the exact molecular mechanism underlying essential hypertension remains obscure, several monogenic forms of hypertension have been identified. Since common genetic variations may predict, not only to susceptibility to hypertension, but also response to antihypertensive drug therapy, pharmacogenetic approaches may provide useful markers in finding relations between candidate genes and phenotypes of hypertension. The aim of this study was to identify genetic mutations and polymorphisms contributing to human hypertension, and examine their relationships to intermediate phenotypes of hypertension, such as blood pressure (BP) responses to antihypertensive drugs or biochemical laboratory values. Two groups of patients were investigated in the present study. The first group was collected from the database of patients investigated in the Hypertension Outpatient Ward, Helsinki University Central Hospital, and consisted of 399 subjects considered to have essential hypertension. Frequncies of the mutant or variant alleles were compared with those in two reference groups, healthy blood donors (n = 301) and normotensive males (n = 175). The second group of subjects with hypertension was collected prospectively. The study subjects (n=313) underwent a protocol lasting eight months, including four one-month drug treatment periods with antihypertensive medications (thiazide diuretic, β-blocker, calcium channel antagonist, and an angiotensin II receptor antagonist). BP responses and laboratory values were related to polymorphims of several candidate genes of the renin-angiotensin system (RAS). In addition, two patients with typical features of Liddle’s syndrome were screened for mutations in kidney epithelial sodium channel (ENaC) subunits. Two novel mutations causing Liddle’s syndrome were identified. The first mutation identified located in the beta-subunit of ENaC and the second mutation found located in the gamma-subunit, constituting the first identified Liddle mutation locating in the extracellular domain. This mutation showed 2-fold increase in channel activity in vitro. Three gene variants, of which two are novel, were identified in ENaC subunits. The prevalence of the variants was three times higher in hypertensive patients (9%) than in reference groups (3%). The variant carriers had increased daily urinary potassium excretion rate in relation to their renin levels compared with controls suggesting increased ENaC activity, although in vitro they did not show increased channel activity. Of the common polymorphisms of the RAS studied, angiotensin II receptor type I (AGTR1) 1166 A/C polymorphism was associated with modest changes in RAS activity. Thus, patients homozygous for the C allele tended to have increased aldosterone and decreased renin levels. In vitro functional studies using transfected HEK293 cells provided additional evidence that the AGTR1 1166 C allele may be associated with increased expression of the AGTR1. Common polymorphisms of the alpha-adducin and the RAS genes did not significantly predict BP responses to one-month monotherapies with hydroclorothiazide, bisoprolol, amlodipin, or losartan. In conclusion, two novel mutations of ENaC subunits causing Liddle’s syndrome were identified. In addition, three common ENaC polymorphisms were shown to be associated with occurrence of essential hypertension, but their exact functional and clinical consequences remain to be explored. The AGTR1 1166 C allele may modify the endocrine phenotype of hypertensive patients, when present in homozygous form. Certain widely studied polymorphisms of the ACE, angiotensinogen, AGTR1 and alpha-adducin genes did not significantly affect responses to a thiazide, β-blocker, calcium channel antagonist, and angiotensin II receptor antagonist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speech has both auditory and visual components (heard speech sounds and seen articulatory gestures). During all perception, selective attention facilitates efficient information processing and enables concentration on high-priority stimuli. Auditory and visual sensory systems interact at multiple processing levels during speech perception and, further, the classical motor speech regions seem also to participate in speech perception. Auditory, visual, and motor-articulatory processes may thus work in parallel during speech perception, their use possibly depending on the information available and the individual characteristics of the observer. Because of their subtle speech perception difficulties possibly stemming from disturbances at elemental levels of sensory processing, dyslexic readers may rely more on motor-articulatory speech perception strategies than do fluent readers. This thesis aimed to investigate the neural mechanisms of speech perception and selective attention in fluent and dyslexic readers. We conducted four functional magnetic resonance imaging experiments, during which subjects perceived articulatory gestures, speech sounds, and other auditory and visual stimuli. Gradient echo-planar images depicting blood oxygenation level-dependent contrast were acquired during stimulus presentation to indirectly measure brain hemodynamic activation. Lip-reading activated the primary auditory cortex, and selective attention to visual speech gestures enhanced activity within the left secondary auditory cortex. Attention to non-speech sounds enhanced auditory cortex activity bilaterally; this effect showed modulation by sound presentation rate. A comparison between fluent and dyslexic readers' brain hemodynamic activity during audiovisual speech perception revealed stronger activation of predominantly motor speech areas in dyslexic readers during a contrast test that allowed exploration of the processing of phonetic features extracted from auditory and visual speech. The results show that visual speech perception modulates hemodynamic activity within auditory cortex areas once considered unimodal, and suggest that the left secondary auditory cortex specifically participates in extracting the linguistic content of seen articulatory gestures. They are strong evidence for the importance of attention as a modulator of auditory cortex function during both sound processing and visual speech perception, and point out the nature of attention as an interactive process (influenced by stimulus-driven effects). Further, they suggest heightened reliance on motor-articulatory and visual speech perception strategies among dyslexic readers, possibly compensating for their auditory speech perception difficulties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastric motility disorders, including delayed gastric emptying (gastroparesis), impaired postprandial fundic relaxation, and gastric myoelectrical disorders, can occur in type 1 diabetes, chronic renal failure, and functional dyspepsia (FD). Symptoms like upper abdominal pain, early satiation, bloating, nausea and vomiting may be related to gastroparesis. Diabetic gastroparesis is related to autonomic neuropathy. Scintigraphy is the gold standard in measuring gastric emptying, but it is expensive, requires specific equipment, and exposes patients to radiation. It also gives information about the intragastric distribution of the test meal. The 13C-octanoic acid breath test (OBT) is an alternative, indirect method of measuring gastric emptying with a stable isotope. Electrogastrography (EGG) registers the slow wave originating in the pacemaker area of the stomach and regulating the peristaltic contractions of the antrum. This study compares these three methods of measuring gastric motility in patients with type 1 diabetes, functional dyspepsia, and chronic renal failure. Currently no effective drugs for treating gastric motility disorders are available. We studied the effect of nizatidine on gastric emptying, because in preliminary studies this drug has proven to have a prokinetic effect due to its cholinergic properties. Of the type 1 patients, 26% had delayed gastric emptying of solids as measured by scintigraphy. Abnormal intragastric distribution of the test meal occurred in 37% of the patients, indicating impaired fundic relaxation. The autonomic neuropathy score correlated positively with the gastric emptying rate of solids (P = 0.006), but HbA1C, plasma glucose levels, or abdominal symptoms were unrelated to gastric emptying or intragastric distribution of the test meal. Gastric emptying of both solids and liquids was normal in all FD patients but abnormal intragastric distribution occurred in 38% of the patients. Nizatidine improved symptom scores and quality of life in FD patients, but not significantly. Instead of enhancing, nizatidine slowed gastric emptying in FD patients (P < 0.05). No significant difference appeared in the frequency of the gastric slow waves measured by EGG in the patients and controls. The correlation between gastric half-emptying times of solids measured by scintigraphy and OBT was poor both in type 1 diabetes and FD patients. According to this study, dynamic dual-tracer scintigraphy is more accurate than OBT or EGG in measuring gastric emptying of solids. Additionally it provides information about gastric emptying of liquids and the intragastric distribution of the ingested test meal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ever-increasing demand for faster computers in various areas, ranging from entertaining electronics to computational science, is pushing the semiconductor industry towards its limits on decreasing the sizes of electronic devices based on conventional materials. According to the famous law by Gordon E. Moore, a co-founder of the world s largest semiconductor company Intel, the transistor sizes should decrease to the atomic level during the next few decades to maintain the present rate of increase in the computational power. As leakage currents become a problem for traditional silicon-based devices already at sizes in the nanometer scale, an approach other than further miniaturization is needed to accomplish the needs of the future electronics. A relatively recently proposed possibility for further progress in electronics is to replace silicon with carbon, another element from the same group in the periodic table. Carbon is an especially interesting material for nanometer-sized devices because it forms naturally different nanostructures. Furthermore, some of these structures have unique properties. The most widely suggested allotrope of carbon to be used for electronics is a tubular molecule having an atomic structure resembling that of graphite. These carbon nanotubes are popular both among scientists and in industry because of a wide list of exciting properties. For example, carbon nanotubes are electronically unique and have uncommonly high strength versus mass ratio, which have resulted in a multitude of proposed applications in several fields. In fact, due to some remaining difficulties regarding large-scale production of nanotube-based electronic devices, fields other than electronics have been faster to develop profitable nanotube applications. In this thesis, the possibility of using low-energy ion irradiation to ease the route towards nanotube applications is studied through atomistic simulations on different levels of theory. Specifically, molecular dynamic simulations with analytical interaction models are used to follow the irradiation process of nanotubes to introduce different impurity atoms into these structures, in order to gain control on their electronic character. Ion irradiation is shown to be a very efficient method to replace carbon atoms with boron or nitrogen impurities in single-walled nanotubes. Furthermore, potassium irradiation of multi-walled and fullerene-filled nanotubes is demonstrated to result in small potassium clusters in the hollow parts of these structures. Molecular dynamic simulations are further used to give an example on using irradiation to improve contacts between a nanotube and a silicon substrate. Methods based on the density-functional theory are used to gain insight on the defect structures inevitably created during the irradiation. Finally, a new simulation code utilizing the kinetic Monte Carlo method is introduced to follow the time evolution of irradiation-induced defects on carbon nanotubes on macroscopic time scales. Overall, the molecular dynamic simulations presented in this thesis show that ion irradiation is a promisingmethod for tailoring the nanotube properties in a controlled manner. The calculations made with density-functional-theory based methods indicate that it is energetically favorable for even relatively large defects to transform to keep the atomic configuration as close to the pristine nanotube as possible. The kinetic Monte Carlo studies reveal that elevated temperatures during the processing enhance the self-healing of nanotubes significantly, ensuring low defect concentrations after the treatment with energetic ions. Thereby, nanotubes can retain their desired properties also after the irradiation. Throughout the thesis, atomistic simulations combining different levels of theory are demonstrated to be an important tool for determining the optimal conditions for irradiation experiments, because the atomic-scale processes at short time scales are extremely difficult to study by any other means.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For achieving efficient fusion energy production, the plasma-facing wall materials of the fusion reactor should ensure long time operation. In the next step fusion device, ITER, the first wall region facing the highest heat and particle load, i.e. the divertor area, will mainly consist of tiles based on tungsten. During the reactor operation, the tungsten material is slowly but inevitably saturated with tritium. Tritium is the relatively short-lived hydrogen isotope used in the fusion reaction. The amount of tritium retained in the wall materials should be minimized and its recycling back to the plasma must be unrestrained, otherwise it cannot be used for fueling the plasma. A very expensive and thus economically not viable solution is to replace the first walls quite often. A better solution is to heat the walls to temperatures where tritium is released. Unfortunately, the exact mechanisms of hydrogen release in tungsten are not known. In this thesis both experimental and computational methods have been used for studying the release and retention of hydrogen in tungsten. The experimental work consists of hydrogen implantations into pure polycrystalline tungsten, the determination of the hydrogen concentrations using ion beam analyses (IBA) and monitoring the out-diffused hydrogen gas with thermodesorption spectrometry (TDS) as the tungsten samples are heated at elevated temperatures. Combining IBA methods with TDS, the retained amount of hydrogen is obtained as well as the temperatures needed for the hydrogen release. With computational methods the hydrogen-defect interactions and implantation-induced irradiation damage can be examined at the atomic level. The method of multiscale modelling combines the results obtained from computational methodologies applicable at different length and time scales. Electron density functional theory calculations were used for determining the energetics of the elementary processes of hydrogen in tungsten, such as diffusivity and trapping to vacancies and surfaces. Results from the energetics of pure tungsten defects were used in the development of an classical bond-order potential for describing the tungsten defects to be used in molecular dynamics simulations. The developed potential was utilized in determination of the defect clustering and annihilation properties. These results were further employed in binary collision and rate theory calculations to determine the evolution of large defect clusters that trap hydrogen in the course of implantation. The computational results for the defect and trapped hydrogen concentrations were successfully compared with the experimental results. With the aforedescribed multiscale analysis the experimental results within this thesis and found in the literature were explained both quantitatively and qualitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A density-functional approach on the hexagonal graphene lattice is developed using an exact numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the local density approximation are parameterized for both variants. The method is used to calculate the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are found to agree with exact diagonalization for small systems, also if local impurities are present. In addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of the scope of exact diagonalization methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleation is the first step in a phase transition where small nuclei of the new phase start appearing in the metastable old phase, such as the appearance of small liquid clusters in a supersaturated vapor. Nucleation is important in various industrial and natural processes, including atmospheric new particle formation: between 20 % to 80 % of atmospheric particle concentration is due to nucleation. These atmospheric aerosol particles have a significant effect both on climate and human health. Different simulation methods are often applied when studying things that are difficult or even impossible to measure, or when trying to distinguish between the merits of various theoretical approaches. Such simulation methods include, among others, molecular dynamics and Monte Carlo simulations. In this work molecular dynamics simulations of the homogeneous nucleation of Lennard-Jones argon have been performed. Homogeneous means that the nucleation does not occur on a pre-existing surface. The simulations include runs where the starting configuration is a supersaturated vapor and the nucleation event is observed during the simulation (direct simulations), as well as simulations of a cluster in equilibrium with a surrounding vapor (indirect simulations). The latter type are a necessity when the conditions prevent the occurrence of a nucleation event in a reasonable timeframe in the direct simulations. The effect of various temperature control schemes on the nucleation rate (the rate of appearance of clusters that are equally able to grow to macroscopic sizes and to evaporate) was studied and found to be relatively small. The method to extract the nucleation rate was also found to be of minor importance. The cluster sizes from direct and indirect simulations were used in conjunction with the nucleation theorem to calculate formation free energies for the clusters in the indirect simulations. The results agreed with density functional theory, but were higher than values from Monte Carlo simulations. The formation energies were also used to calculate surface tension for the clusters. The sizes of the clusters in the direct and indirect simulations were compared, showing that the direct simulation clusters have more atoms between the liquid-like core of the cluster and the surrounding vapor. Finally, the performance of various nucleation theories in predicting simulated nucleation rates was investigated, and the results among other things highlighted once again the inadequacy of the classical nucleation theory that is commonly employed in nucleation studies.