33 resultados para White Lake (Mich.)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In aquatic systems, the ability of both the predator and prey to detect each other may be impaired by turbidity. This could lead to significant changes in the trophic interactions in the food web of lakes. Most fish use their vision for predation and the location of prey can be highly influenced by light level and clarity of the water environment. Turbidity is an optical property of water that causes light to be scattered and absorbed by particles and molecules. Turbidity is highly variable in lakes, due to seasonal changes in suspended sediments, algal blooms and wind-driven suspension of sediments especially in shallow waters. There is evidence that human activity has increased erosion leading to increased turbidity in aquatic systems. Turbidity could also play a significant role in distribution of fish. Turbidity could act as a cover for small fish and reduce predation risk. Diel horizontal migration by fish is common in shallow lakes and is considered as consequences of either optimal foraging behaviour for food or as a trade-off between foraging and predator avoidance. In turbid lakes, diel horizontal migration patterns could differ since turbidity can act as a refuge itself and affect the predator-prey interactions. Laboratory experiments were conducted with perch (Perca fluviatilis L.) and white bream (Abramis björkna (L.)) to clarify the effects of turbidity on their feeding. Additionally to clarify the effects of turbidity on predator preying on different types of prey, pikeperch larvae (Sander lucioperca (L.)), Daphnia pulex (Leydig), Sida crystallina (O.F. Müller), and Chaoborus flavicans (Meigen) were used as prey in different experiments. To clarify the role of turbidity in distribution and diel horizontal migration of perch, roach (Rutilus rutilus (L.)) and white bream, field studies were conducted in shallow turbid lakes. A clear and a turbid shallow lake were compared to investigate distribution of perch and roach in these two lakes in a 15-year study period. Feeding efficiency of perch and white bream was not significantly affected with increasing clay turbidity up to 50 NTU. The perch experiments with pikeperch larvae suggested that clay turbidity could act as a refuge especially at turbidity levels higher than 50 NTU. Perch experiments with different prey types suggested that pikeperch larvae probably use turbidity as a refuge better compared to Daphnia. Increase in turbidity probably has stronger affect on perch predating on plant-attached prey. The main findings of the thesis show that turbidity can play a significant role in distribution of fish. Perch and roach could use turbidity as refuge when macrophytes disappear while small perch may also use high turbidity as refuge when macrophytes are present. Floating-leaved macrophytes are probably good refuges for small fish in clay-turbid lakes and provide a certain level of turbidity and not too complex structure for refuge. The results give light to the predator-prey interactions in turbid environments. Turbidity of water should be taken in to account when studying the diel horizontal migrations and distribution of fish in shallow lakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In lake ecosystems, both fish and invertebrate predators have dramatic effects on their prey communities. Fish predation selects large cladocerans while invertebrate predators prefer prey of smaller size. Since invertebrate predators are the preferred food items for fish, their occurrence at high densities is often connected with the absence or low number of fish. It is generally believed that invertebrate predators can play a significant role only if the density of planktivorous fish is low. However, in eutrophic clay-turbid Lake Hiidenvesi (southern Finland), a dense population of predatory Chaoborus flavicans larvae coexists with an abundant fish population. The population covers the stratifying area of the lake and attains a maximum population density of 23000 ind. m-2. This thesis aims to clarify the effects of Chaoborus flavicans on the zooplankton community and the environmental factors facilitating the coexistence of fish and invertebrate predators. In the stratifying area of Lake Hiidenvesi, the seasonal succession of cladocerans was exceptional. The spring biomass peak of cladocerans was missing and the highest biomass occurred in midsummer. In early summer, the consumption rate by chaoborids clearly exceeded the production rate of cladocerans and each year the biomass peak of cladocerans coincided with the minimum chaoborid density. In contrast, consumption by fish was very low and each study year cladocerans attained maximum biomass simultaneously with the highest consumption by smelt (Osmerus eperlanus). The results indicated that Chaoborus flavicans was the main predator of cladocerans in the stratifying area of Lake Hiidenvesi. The clay turbidity strongly contributed to the coexistence of chaoborids and smelt at high densities. Turbidity exceeding 30 NTU combined with light intensity below 0.1 μE m-2 s-1provides an efficient daytime refuge for chaoborids, but turbidity alone is not an adequate refuge unless combined with low light intensity. In the non-stratifying shallow basins of Lake Hiidenvesi, light intensity exceeds this level during summer days at the bottom of the lake, preventing Chaoborus forming a dense population in the shallow parts of the lake. Chaoborus can be successful particularly in deep, clay-turbid lakes where they can remain high in the water column close to their epilimnetic prey. Suspended clay alters the trophic interactions by weakening the link between fish and Chaoborus, which in turn strengthens the effect of Chaoborus predation on crustacean zooplankton. Since food web management largely relies on manipulations of fish stocks and the cascading effects of such actions, the validity of the method in deep clay-turbid lakes may be questioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change contributes directly or indirectly to changes in species distributions, and there is very high confidence that recent climate warming is already affecting ecosystems. The Arctic has already experienced the greatest regional warming in recent decades, and the trend is continuing. However, studies on the northern ecosystems are scarce compared to more southerly regions. Better understanding of the past and present environmental change is needed to be able to forecast the future. Multivariate methods were used to explore the distributional patterns of chironomids in 50 shallow (≤ 10m) lakes in relation to 24 variables determined in northern Fennoscandia at the ecotonal area from the boreal forest in the south to the orohemiarctic zone in the north. Highest taxon richness was noted at middle elevations around 400 m a.s.l. Significantly lower values were observed from cold lakes situated in the tundra zone. Lake water alkalinity had the strongest positive correlation with the taxon richness. Many taxa had preference for lakes either on tundra area or forested area. The variation in the chironomid abundance data was best correlated with sediment organic content (LOI), lake water total organic carbon content, pH and air temperature, with LOI being the strongest variable. Three major lake groups were separated on the basis of their chironomid assemblages: (i) small and shallow organic-rich lakes, (ii) large and base-rich lakes, and (iii) cold and clear oligotrophic tundra lakes. Environmental variables best discriminating the lake groups were LOI, taxon richness, and Mg. When repeated, this kind of an approach could be useful and efficient in monitoring the effects of global change on species ranges. Many species of fast spreading insects, including chironomids, show a remarkable ability to track environmental changes. Based on this ability, past environmental conditions have been reconstructed using their chitinous remains in the lake sediment profiles. In order to study the Holocene environmental history of subarctic aquatic systems, and quantitatively reconstruct the past temperatures at or near the treeline, long sediment cores covering the last 10000 years (the Holocene) were collected from three lakes. Lower temperature values than expected based on the presence of pine in the catchment during the mid-Holocene were reconstructed from a lake with great water volume and depth. The lake provided thermal refuge for profundal, cold adapted taxa during the warm period. In a shallow lake, the decrease in the reconstructed temperatures during the late Holocene may reflect the indirect response of the midges to climate change through, e.g., pH change. The results from three lakes indicated that the response of chironomids to climate have been more or less indirect. However, concurrent shifts in assemblages of chironomids and vegetation in two lakes during the Holocene time period indicated that the midges together with the terrestrial vegetation had responded to the same ultimate cause, which most likely was the Holocene climate change. This was also supported by the similarity in the long-term trends in faunal succession for the chironomid assemblages in several lakes in the area. In northern Finnish Lapland the distribution of chironomids were significantly correlated with physical and limnological factors that are most likely to change as a result of future climate change. The indirect and individualistic response of aquatic systems, as reconstructed using the chironomid assemblages, to the climate change in the past suggests that in the future, the lake ecosystems in the north do not respond in one predictable way to the global climate change. Lakes in the north may respond to global climate change in various ways that are dependent on the initial characters of the catchment area and the lake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Järvijään paksuus ja volyymi Suomessa jaksolla 1961-90

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Järvien happamoituminen Suomessa: Alueellinen vedenlaatu ja kriittinen kuormitus

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimus käsittelee kääpien sukulaisuussuhteita. Käävät ovat kantasienten (Basidiomycota) muotoryhmä, joiden itiöemien alapinta muodostuu yhteensulautuneista pilleistä. Muotoryhmänä kääpiä voi verrata vaikka puihin siinä mielessä, että käävät kuten puutkaan eivät ole samankaltaisuudestaan huolimatta kaikki sukua toisilleen. DNA:n käyttö sukulaisuussuhteiden selvittämisessä on aloittanut mullistuksen kääpien luokittelussa. Aiemmin käytetty, itiöemien ominaisuuksiin perustunut luokittelu on osoittautunut keinotekoiseksi sukulaisuussuhteiden kannalta. Tutkimuksessani syvennyttiin useamman kääpäsuvun polveutumishistoriaan hyödyntäen DNA:ta ja perinteisiä menetelmiä. Tutkimuksen keskeisimmät tulokset liittyvät sitkokääpien sukuun (Antrodiella). Tämä noin 70 lajia sisältävä suku osoittautui rikkonaiseksi - sitkokääpiin luetut lajit kuuluvat kahteen sienilahkoon ja oikesti vähintään 13 sukuun. Tutkimuksessa löytyi kaksi Suomelle uutta sitkokääpää, leppikääpä (A. ichnusana) ja nipukkakääpä (A. leucoxantha). Uudet suvut kuvattiin Suomessa esiintyville sirppikääville (Sidera) ja talikääville (Obba). Uusi kääpäsuku ja -laji kuvattiin myös Indonesiasta (Sebipora aquosa). Valtaosa sitkokääpiin luetuista lajeista kuuluu orakarakoiden heimoon (Steccherinaceae), joka rajattiin tässä tutkimuksessa uudelleen. Heimoon kuuluvat mm. karakäävät (Junghuhnia) ja orakasmaiset orakarakat (Steccherinum). Sen sisällä selvitettiin kääpien ja orakkaiden sukulaisuussuhteita. Perinteisesti käävät ja orakkaat on viety eri sukuihin riippumatta niiden mikroskooppisesta samankaltaisuudesta. Tulosten valossa orakarakoiden heimossa käävät ja orakkaat pysyvät pääosin erillisissä suvuissa, mutta tästä on myös poikkeuksia (Antrodiella, Metuloidea ja Steccherinum). Lähes kaikki DNA:n perusteella määriteltävissä olevat suvut ovat tunnistettavissa itiöemien ominaisuuksiensa perusteella. Tulokset antavat eväitä kääpien luokitteluun laajemminkin osoittamalla, mitkä ominaisuudet ovat luokittelun kannalta merkityksellisiä. Tarkentunut tieto lajimäärästä ja lajien sukulaisuussuhteista hyödyttää ekologista tutkimusta sekä arvioita lajien uhanalaisuudesta. Tutkimuksen aikana luotua DNA-kirjastoa käytetään lajien tunnistamiseen. Tuloksia voidaan hyödyntää myös etsittäessä bioteknologisia sovelluksia käävistä, sillä sovellusten kannalta kiinnostavat ominaisuudet seuraavat usein sienten sukupuuta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tiivistelmä: Simulointimallin soveltaminen Pohjois-Päijänteellä