Carbon dioxide and methane exchange between a boreal pristine lake and the atmosphere


Autoria(s): Huotari, Jussi
Contribuinte(s)

Helsingin yliopisto, bio- ja ympäristötieteellinen tiedekunta, ympäristötieteiden laitos

Helsingfors universitet, bio- och miljövetenskapliga fakulteten, miljövetenskapliga institutionen

University of Helsinki, Faculty of Biological and Environmental Sciences, Department of Environmental Sciences

Lammi Biological Station

Data(s)

25/05/2011

Resumo

Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.

Sisävesien merkitys hiilenkierrolle on huomattava pohjoisella havumetsävyöhykkeellämme, missä järvien osuus maapinta-alasta voi paikoin olla jopa yli 20%. Järviimme kulkeutuu suuria määriä orgaanista hiiltä ympäröiviltä valuma-alueilta, mutta toisaalta epäorgaanisen hiilen määrä hiilen kokonaiskuormassa on pitkään ollut arvoitus. Osa metsien tuottamasta orgaanisesta hiilestä muuntuu järvien biologisissa prosesseissa metaaniksi ja hiilidioksidiksi, mistä johtuen järvet ovat pääsääntöisesti näiden tärkeiden kasvihuonekaasujen lähteitä ilmakehään. Kaasujen vaihto järven ja ilmakehän välillä on kuitenkin suurin epävarmuustekijä, kun määritetään järvien roolia alueellisessa hiilenkierrossa. Tämä johtuu siitä, että perinteiset tutkimusmenetelmät ovat niin työläitä, että edustavan mittausaineiston kerääminen on hankalaa. Yleisesti käytetyt menetelmät voivat myös muuttaa luonnollista kaasujen vaihtoa ja siten vääristää tuloksia. Tutkin työssäni pienen, luonnontilaisen metsäjärven metaani- ja hiilidioksidipitoisuuksien, sekä järven ja ilmakehän välisen kaasujen vaihdon ajallista vaihtelua. Käytin hiilidioksidimittauksissa järvitutkimuksessa uusia jatkuvatoimisia mittausmenetelmiä ja testasin niiden käyttökelpoisuutta suhteessa perinteisiin menetelmiin. Tulosten perusteella arvioin tutkimusjärveni roolia alueellisessa hiilenkierrossa. Järven lämpötilakerrostuminen sääteli kasvihuonekaasujen pitoisuuksien ajallista vaihtelua. Keskimäärin pitoisuudet kohosivat jääpeitteisenä aikana, kuten myös alusvedessä kesäkerrostuneisuuden aikaan. Päällysvedessä pitoisuudet olivat kesällä lähes tasapainossa ilmakehän kanssa. Metaanipitoisuudet olivat koko ajan tasapainopitoisuutta suuremmat, hiilidioksidilla havaittiin kesällä ajoittain myös alikyllästystilanteita eli järvi toimi hiilidioksidin nieluna. Metaanin biologinen hapetus vesipatsaassa oli tehokasta keväällä ja kesällä, ja suurimmat päästöt ajoittuivatkin syksyn täyskiertoon. Hiilidioksidipäästöt ilmakehään olivat suurimmillaan keväällä heti jäiden lähdettyä ja syksyn täyskierron aikana. Korkeita päästöjä mitattiin hetkellisesti myös kesällä, kun lämpötilakerrostuneisuus murtui, ja alusveden hiilidioksidirikas vesi sekoittui päällysveteen. Kesäaikaiset hiilidioksidipäästöt jäivät kuitenkin kokonaisuudessaan alhaisiksi. Vuositasolla metaanipäästö järvestä oli pieni eli vain 0,11 mol m-2 yr-1. Vuotuiset hiilidioksidipäästöt olivat keskimäärin 77 g C m-2 yr-1. Järven hiilidioksidipäästöt olivat arviolta noin 10% koko valuma-alueen vuotuisesta tuotannosta, eli periaattessa 10% metsän sitomasta ilman hiilidioksidista palautui järven kautta takaisin ilmakehään. Tutkimuksessa kokeiltu metsien hiilidioksidimittauksissa yleisesti käytetty ns. suora vuonmittaus toimi hyvin myös järven ja ilmakehän välisen hiilidioksidin vaihdon mittauksessa. Suojainen metsäjärvi osoittautui kuitenkin haastavaksi tutkimuskohteeksi, koska olosuhteet eivät aina olleet menetelmälle suotuisat, ja suuri osa mittausaineistosta jouduttiin hylkäämään. Tutkimusaineiston tarkan seulonnan jälkeen saatiin kuitenkin luotettava aineisto kuvaamaan järven ja ilmakehän välisen hiilidioksidin vaihdon ajallisesta vaihtelua ja vuotuista tasoa. Viisi avovesikautta kattava aikasarja on nyt maailman pisin. Kun tutkimukseen yhdistettiin jatkuvatoiminen veden hiilidioksidipitoisuuden mittaus havaittiin, että yleisesti käytössä oleva kaasunvaihtomalli aliarvioi järven ja ilmakehän välistä kaasunvaihtoa. Työssä esitetty jatkuvaa hiilidioksidipitoisuuden mittausta ja metsäekologisessa tutkimuksessa käytettyä laskentamallia hyödyntävä menetelmä järven perustuotannon ja yhteisöhengityksen määrittämiseksi osoittautui lupaavaksi. Menetelmä vaatii kuitenkin lisää testausta ja tarkempaa tietoa hiilidioksidin kulkeutumisesta järven vesipatsaassa. Tämä tutkimus antaa aiempaa tarkempaa tietoa järven metaani- ja hiilidioksidipitoisuuksista sekä järven ja ilmakehän välisestä kaasujenvaihdosta. Tutkimus myös vahvistaa käsitystä siitä, että järvillä on tärkeä rooli alueellisessa hiilenkierrossa. Se myös luo pohjaa uusien menetelmien käytöönotolle järvien hiilenkiertotutkimuksessa.

Formato

application/pdf

Identificador

URN:ISBN:978-952-10-6920-8

http://hdl.handle.net/10138/26302

Idioma(s)

en

Publicador

Helsingin yliopisto

Helsingfors universitet

University of Helsinki

Relação

URN:ISBN:978-952-10-6919-2

1799-0580

Direitos

Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.

This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.

Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden.

Palavras-Chave #ympäristöekologia
Tipo

Väitöskirja (artikkeli)

Doctoral dissertation (article-based)

Doktorsavhandling (sammanläggning)

Text