2 resultados para White Lake (Mich.)

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lake Elsinore quadrangle covers about 250 square miles and includes parts of the southwest margin of the Perris Block, the Elsinore trough, the southeastern end of the Santa Ana Mountains, and the Elsinore Mountains.

The oldest rocks consist of an assemblage of metamorphics of igneous effusive and sedimentary origin, probably, for the most part, of Triassic age. They are intruded by diorite and various hypabyssal rocks, then in turn by granitic rocks, which occupy over 40 percent of the area. Following this last igneous activity of probable Lower Cretaceous age, an extended period of sedimentation started with the deposition of the marine Upper Cretaceous Chico formation and continued during the Paloecene under alternating marine and continental conditions on the margins of the blocks. A marine regression towards the north, during the Neocene, accounts for the younger Tertiary strata in the region under consideration.

Outpouring of basalts to the southeast indicates that igneous activity was resumed toward the close of the Tertiary. The fault zone, which characterizes the Elsinor trough, marks one of the major tectonic lines of southem California. It separates the upthrown and tilted block of the Santa Ana Mountains to the south from the Perris Block to the north.

Most of the faults are normal in type and nearly parallel to the general trend of the trough, or intersect each other at an acute angle. Vertical displacements generally exceed the horizontal ones and several periods of activity are recognized.

Tilting of Tertiary and older Quaternary sediments in the trough have produced broad synclinal structures which have been modified by subsequent faulting.

Five old surfaces of erosion are exposed on the highlands.

The mineral resources of the region are mainly high-grade clay deposits and mineral waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fokker-Planck (FP) equation is used to develop a general method for finding the spectral density for a class of randomly excited first order systems. This class consists of systems satisfying stochastic differential equations of form ẋ + f(x) = m/Ʃ/j = 1 hj(x)nj(t) where f and the hj are piecewise linear functions (not necessarily continuous), and the nj are stationary Gaussian white noise. For such systems, it is shown how the Laplace-transformed FP equation can be solved for the transformed transition probability density. By manipulation of the FP equation and its adjoint, a formula is derived for the transformed autocorrelation function in terms of the transformed transition density. From this, the spectral density is readily obtained. The method generalizes that of Caughey and Dienes, J. Appl. Phys., 32.11.

This method is applied to 4 subclasses: (1) m = 1, h1 = const. (forcing function excitation); (2) m = 1, h1 = f (parametric excitation); (3) m = 2, h1 = const., h2 = f, n1 and n2 correlated; (4) the same, uncorrelated. Many special cases, especially in subclass (1), are worked through to obtain explicit formulas for the spectral density, most of which have not been obtained before. Some results are graphed.

Dealing with parametrically excited first order systems leads to two complications. There is some controversy concerning the form of the FP equation involved (see Gray and Caughey, J. Math. Phys., 44.3); and the conditions which apply at irregular points, where the second order coefficient of the FP equation vanishes, are not obvious but require use of the mathematical theory of diffusion processes developed by Feller and others. These points are discussed in the first chapter, relevant results from various sources being summarized and applied. Also discussed is the steady-state density (the limit of the transition density as t → ∞).