29 resultados para Phylogeny, Conservation, Wet tropics, Bioluminescence, Cave, Troglophile


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One major reason for the global decline of biodiversity is habitat loss and fragmentation. Conservation areas can be designed to reduce biodiversity loss, but as resources are limited, conservation efforts need to be prioritized in order to achieve best possible outcomes. The field of systematic conservation planning developed as a response to opportunistic approaches to conservation that often resulted in biased representation of biological diversity. The last two decades have seen the development of increasingly sophisticated methods that account for information about biodiversity conservation goals (benefits), economical considerations (costs) and socio-political constraints. In this thesis I focus on two general topics related to systematic conservation planning. First, I address two aspects of the question about how biodiversity features should be valued. (i) I investigate the extremely important but often neglected issue of differential prioritization of species for conservation. Species prioritization can be based on various criteria, and is always goal-dependent, but can also be implemented in a scientifically more rigorous way than what is the usual practice. (ii) I introduce a novel framework for conservation prioritization, which is based on continuous benefit functions that convert increasing levels of biodiversity feature representation to increasing conservation value using the principle that more is better. Traditional target-based systematic conservation planning is a special case of this approach, in which a step function is used for the benefit function. We have further expanded the benefit function framework for area prioritization to address issues such as protected area size and habitat vulnerability. In the second part of the thesis I address the application of community level modelling strategies to conservation prioritization. One of the most serious issues in systematic conservation planning currently is not the deficiency of methodology for selection and design, but simply the lack of data. Community level modelling offers a surrogate strategy that makes conservation planning more feasible in data poor regions. We have reviewed the available community-level approaches to conservation planning. These range from simplistic classification techniques to sophisticated modelling and selection strategies. We have also developed a general and novel community level approach to conservation prioritization that significantly improves on methods that were available before. This thesis introduces further degrees of realism into conservation planning methodology. The benefit function -based conservation prioritization framework largely circumvents the problematic phase of target setting, and allowing for trade-offs between species representation provides a more flexible and hopefully more attractive approach to conservation practitioners. The community-level approach seems highly promising and should prove valuable for conservation planning especially in data poor regions. Future work should focus on integrating prioritization methods to deal with multiple aspects in combination influencing the prioritization process, and further testing and refining the community level strategies using real, large datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ongoing rapid fragmentation of tropical forests is a major threat to global biodiversity. This is because many of the tropical forests are so-called biodiversity 'hotspots', areas that host exceptional species richness and concentrations of endemic species. Forest fragmentation has negative ecological and genetic consequences for plant survival. Proposed reasons for plant species' loss in forest fragments are, e.g., abiotic edge effects, altered species interactions, increased genetic drift, and inbreeding depression. To be able to conserve plants in forest fragments, the ecological and genetic processes that threaten the species have to be understood. That is possible only after obtaining adequate information on their biology, including taxonomy, life history, reproduction, and spatial and genetic structure of the populations. In this research, I focused on the African violet (genus Saintpaulia), a little-studied conservation flagship from the Eastern Arc Mountains and Coastal Forests hotspot of Tanzania and Kenya. The main objective of the research was to increase understanding of the life history, ecology and population genetics of Saintpaulia that is needed for the design of appropriate conservation measures. A further aim was to provide population-level insights into the difficult taxonomy of Saintpaulia. Ecological field work was conducted in a relatively little fragmented protected forest in the Amani Nature Reserve in the East Usambara Mountains, in northeastern Tanzania, complemented by population genetic laboratory work and ecological experiments in Helsinki, Finland. All components of the research were conducted with Saintpaulia ionantha ssp. grotei, which forms a taxonomically controversial population complex in the study area. My results suggest that Saintpaulia has good reproductive performance in forests with low disturbance levels in the East Usambara Mountains. Another important finding was that seed production depends on sufficient pollinator service. The availability of pollinators should thus be considered in the in situ management of threatened populations. Dynamic population stage structures were observed suggesting that the studied populations are demographically viable. High mortality of seedlings and juveniles was observed during the dry season but this was compensated by ample recruitment of new seedlings after the rainy season. Reduced tree canopy closure and substrate quality are likely to exacerbate seedling and juvenile mortality, and, therefore, forest fragmentation and disturbance are serious threats to the regeneration of Saintpaulia. Restoration of sufficient shade to enhance seedling establishment is an important conservation measure in populations located in disturbed habitats. Long-term demographic monitoring, which enables the forecasting of a population s future, is also recommended in disturbed habitats. High genetic diversities were observed in the populations, which suggest that they possess the variation that is needed for evolutionary responses in a changing environment. Thus, genetic management of the studied populations does not seem necessary as long as the habitats remain favourable for Saintpaulia. The observed high levels of inbreeding in some of the populations, and the reduced fitness of the inbred progeny compared to the outbred progeny, as revealed by the hand-pollination experiment, indicate that inbreeding and inbreeding depression are potential mechanisms contributing to the extinction of Saintpaulia populations. The relatively weak genetic divergence of the three different morphotypes of Saintpaulia ionantha ssp. grotei lend support to the hypothesis that the populations in the Usambara/lowlands region represent a segregating metapopulation (or metapopulations), where subpopulations are adapting to their particular environments. The partial genetic and phenological integrity, and the distinct trailing habit of the morphotype 'grotei' would, however, justify its placement in a taxonomic rank of its own, perhaps in a subspecific rank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parasitic wasps are one of the largest insect groups and their life histories are remarkably variable. Common to all parasitic wasps is that they kill their hosts, which are usually beetles, butterflies and sometimes spiders. Hosts are often at a larval or pupal stage and live in concealed conditions, such as in plant tissue. Parasitic wasps have two main ways of finding their host. 1) They can detect chemical compounds emitted by damaged plant material or released by larvae living in plant tissue, and 2) detect the larvae by sound vibrations. Even though pupae are immobile and silent, and therefore do not cause vibration, parasitoids have, however, adapted to find passive developmental stages by producing vibration themselves by knocking the substrate with their antennae, and then detecting the echoes with their legs. This echolocation allows a parasitoid to locate its potential hosts that are deeply buried in wood. This study focuses on the relationships of the subfamily Cryptinae (Hymenoptera: Ichneumonidae) and related taxa, and the evolution of host location mechanism. There are no earlier studies of the phylogeny of the Cryptinae, and the position of related taxa are unclear. According to the earlier classification, which is entirely intuitional, the Cryptinae is divided into three tribes: Cryptini, Hemigasterini and Phygadeuontini. Further, these tribes are subdiveded into numerous subtribes. This work, based on molecular characters, shows that the cryptine tribes Cryptini, Phygadeuon¬tini and Hemigasterini come out largely as monophyletic groups, thus agreeing with the earlier classification. The earlier subtribal classification had no support. In addition, it is shown that modified antennal structures are associated with host usage of wood-boring coleopteran hosts. The cryptines have a clear modification series on their antennal tips from a simply tip to a hammer-like structure. The species with strongly modified antennae belong mostly to the tribe Cryptini and they utilise wood-boring beetles as hosts. Also, field observations on insect behaviour support this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study is to examine the social impacts of the integrated conservation and development project (ICDP) aimed at biodiversity conservation and local socio-economic development in the Ranomafana National Park (RNP), Madagascar. Furthermore, the study explores social sustainability and justice of the ICDP in Ranomafana. This ethnographically informed impact study uses of various field methods. The research material used consists of observation, interviews (key-person and focus group), school children's writings, official statistics and project documents. Fieldwork was conducted in three phases in 2001, 2002 and 2004 in twelve villages around the park, as well as in neighbouring areas of Ranomafana. However, four of those twelve villages were chosen for closer study. This study consists of five independent articles and a concluding chapter. Social impacts were studied through reproductive health indicators as well as a life security approach. Equity and distribution of benefits and drawbacks of ICDP were analysed and the actors related to the conservation in Ranomafana were identified. The children and adolescents' environmental views were also examined. The reproductive health indicators studied showed a poor state of reproductive health in the park area. Moreover, the existing social capital in the villages seemed to be fragmented due to economic difficulties that were partly caused by the conservation regulations. The ICDP in Ranomafana did not pay attention to the heterogeneity of the affected communities even though the local beneficiaries of the ICDP varied according to their ethnicity, living place, wealth, social position and gender. In addition, various conservation actors (local people in various groups, local authorities, tourist business owners, conservation NGOs and scientists) contest their interests over the forest, conservation and its related activities. This study corroborates the same type of evidence and conclusions discussed in other similar cases elsewhere: so called social conservation programmes still cannot meet the needs of the people living near the protected areas; on the contrary, they even have a reverse impact on the people's lives. A fundamental misunderstood assumption in the conservation process in Ranomafana was to consider the local people as a problem for biodiversity conservation. Major reasons for the failure of the ICDP in Ranomafana include a lack of local institutions that would have been able to communicate as equals with the conservation NGOs as well as to transfer the tradition of the authoritarian governance in conservation management together with the over-appreciation of scientific biodiversity, and lack of will to understand the local people's rights to use the forest for their livelihoods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently it has been recognized that evolutionary aspects play a major role in conservation issues of a species. In this thesis I have combined evolutionary research with conservation studies to provide new insight into these fields. The study object of this thesis is the house sparrow, a species that has features that makes it interesting for this type of study. The house sparrow has been ubiquitous almost all over the world. Even though being still abundant, several countries have reported major declines. These declines have taken place in a relatively short time covering both urban and rural habitats. In Finland this species has declined by more than two thirds in just over two decades. In addition, as the house sparrow lives only in human inhabited areas it can also raise public awareness to conservation issues. I used both an extensive museum collection of house sparrows collected in 1980s from all over Finland as well as samples collected in 2009 from 12 of the previously collected localities. I used molecular techniques to study neutral genetic variation within and genetic differentiation between the study populations. This knowledge I then combined with data gathered on morphometric measurements. In addition I analyzed eight heavy metals from the livers of house sparrows that lived in either rural or urban areas in the 1980s and evaluated the role of heavy metal pollution as a possible cause of the declines. Even though dispersal of house sparrows is limited I found that just as the declines started in 1980s the house sparrows formed a genetically panmictic population on the scale of the whole Finland. When compared to Norway, where neutral genetic divergence has been found even with small geographic distances, I concluded that this difference would be due to contrasting landscapes. In Finland the landscape is rather homogeneous facilitating the movements of these birds and maintaining gene flow even with the low dispersal. To see whether the declines have had an effect on the neutral genetic variation of the populations I did a comparison between the historical and contemporary genetic data. I showed that even though genetic diversity has not decreased due to the drastic declines the populations have indeed become more differentiated from each other. This shows that even in a still quite abundant species the declines can have an effect on the genetic variation. It is shown that genetic diversity and differentiation may approach their new equilibriums at different rates. This emphasizes the importance of studying both of them and if the latter has increased it should be taken as a warning sign of a possible loss of genetic diversity in the future. One of the factors suggested to be responsible for the house sparrow declines is heavy metal pollution. When studying the livers of house sparrows from 1980s I discovered higher levels of heavy metal concentrations in urban than rural habitats, but the levels of the metals were comparatively low and based on that heavy metal pollution does not seem to be a direct cause for the declines in Finland. However, heavy metals are known to decrease the amount of insects in urban areas and thus in the cities heavy metals may have an indirect effect on house sparrows. Although neutral genetic variation is an important tool for conservation genetics it does not tell the whole story. Since neutral genetic variation is not affected by selection, information can be one-sided. It is possible that even neutral genetic differentiation is low, there can be substantial variation in additive genetic traits indicating local adaptation. Therefore I performed a comparison between neutral genetic differentiation and phenotypic differentiation. I discovered that two traits out of seven are likely to be under directional selection, whereas the others could be affected by random genetic drift. Bergmann s rule may be behind the observed directional selection in wing length and body mass. These results highlight the importance of estimating both neutral and adaptive genetic variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimus käsittelee kääpien sukulaisuussuhteita. Käävät ovat kantasienten (Basidiomycota) muotoryhmä, joiden itiöemien alapinta muodostuu yhteensulautuneista pilleistä. Muotoryhmänä kääpiä voi verrata vaikka puihin siinä mielessä, että käävät kuten puutkaan eivät ole samankaltaisuudestaan huolimatta kaikki sukua toisilleen. DNA:n käyttö sukulaisuussuhteiden selvittämisessä on aloittanut mullistuksen kääpien luokittelussa. Aiemmin käytetty, itiöemien ominaisuuksiin perustunut luokittelu on osoittautunut keinotekoiseksi sukulaisuussuhteiden kannalta. Tutkimuksessani syvennyttiin useamman kääpäsuvun polveutumishistoriaan hyödyntäen DNA:ta ja perinteisiä menetelmiä. Tutkimuksen keskeisimmät tulokset liittyvät sitkokääpien sukuun (Antrodiella). Tämä noin 70 lajia sisältävä suku osoittautui rikkonaiseksi - sitkokääpiin luetut lajit kuuluvat kahteen sienilahkoon ja oikesti vähintään 13 sukuun. Tutkimuksessa löytyi kaksi Suomelle uutta sitkokääpää, leppikääpä (A. ichnusana) ja nipukkakääpä (A. leucoxantha). Uudet suvut kuvattiin Suomessa esiintyville sirppikääville (Sidera) ja talikääville (Obba). Uusi kääpäsuku ja -laji kuvattiin myös Indonesiasta (Sebipora aquosa). Valtaosa sitkokääpiin luetuista lajeista kuuluu orakarakoiden heimoon (Steccherinaceae), joka rajattiin tässä tutkimuksessa uudelleen. Heimoon kuuluvat mm. karakäävät (Junghuhnia) ja orakasmaiset orakarakat (Steccherinum). Sen sisällä selvitettiin kääpien ja orakkaiden sukulaisuussuhteita. Perinteisesti käävät ja orakkaat on viety eri sukuihin riippumatta niiden mikroskooppisesta samankaltaisuudesta. Tulosten valossa orakarakoiden heimossa käävät ja orakkaat pysyvät pääosin erillisissä suvuissa, mutta tästä on myös poikkeuksia (Antrodiella, Metuloidea ja Steccherinum). Lähes kaikki DNA:n perusteella määriteltävissä olevat suvut ovat tunnistettavissa itiöemien ominaisuuksiensa perusteella. Tulokset antavat eväitä kääpien luokitteluun laajemminkin osoittamalla, mitkä ominaisuudet ovat luokittelun kannalta merkityksellisiä. Tarkentunut tieto lajimäärästä ja lajien sukulaisuussuhteista hyödyttää ekologista tutkimusta sekä arvioita lajien uhanalaisuudesta. Tutkimuksen aikana luotua DNA-kirjastoa käytetään lajien tunnistamiseen. Tuloksia voidaan hyödyntää myös etsittäessä bioteknologisia sovelluksia käävistä, sillä sovellusten kannalta kiinnostavat ominaisuudet seuraavat usein sienten sukupuuta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

XVIII IUFRO World Congress, Ljubljana 1986.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation is focused on the taxonomy, phylogeny, and ecology of the vagrant, erratic and allied terricolous and saxicolous species of the genera Aspicilia A. Massal. and Circinaria Link (Megasporaceae), particularly those traditionally referred to as manna lichens . The group has previously been defined on the basis of few morphological characters. The phylogeny of the family Megasporaceae is inferred from the combined dataset of nuLSU and mtSSU sequences. Five genera Aspicilia, Circinaria, Lobothallia, Megaspora, and Sagedia are recognized. Lobothallia is sister of the four other genera, while Aspicilia and Sagedia form the next clade. All these genera have small asci with eight spores. Circinaria is a sister genus of Megaspora, and these two have in common asci with (1 4) 6 8 large spores. Circinaria forms a monophyletic group and sphaerothallioid species form a monophyletic group within Circinaria. The presence of certain morphological characters such as pseudocyphellae, thickness of cortex and medulla layers, as well as ecological differences in sphaerothallioid species distinguish it from some other crustose species, especially those containing aspicilin and characterised by thin cortex and medulla layers, conidium length c. 6 12 µm and absence of pseudocyphellae. If sphaerothallioid species are accepted as a distinct genus, the rest of the Circinaria species would remain as a paraphyletic assemblage. Currently, the genus Circinaria includes all the sphaerothallioid species and its generic position is confirmed and accepted. Thus, it is proposed as a correct generic name also for the manna lichens described originally in other genera. Phylogeny at the species level was studied using nrITS sequence data. Traditionally, morphological characters have been used for the recognition of species. They were re-evaluated in the light of molecular data. Since characters such as vagrant, erratic and crustose growth forms proved to be misleading for the recognition of some species, a combination of several characters (including molecular data) is recommended. Vagrant growth form seems to have evolved several times among the distantly related lineages and even within a single population. The reasons behind the high plasticity in the external morphology of the sphaerothallioid Circinaria remain, however, unknown. Six new species are recognized: Aspicilia tibetica, Circinaria arida, C. digitata nom provis., C. gyrosa nom. provis., C. rogeri nom. provis., and C. rostamii nom. provis. Based on an analysis of nrITS dataset, three new erratic, vagrant and crustose species were also recognized, but these require additional study. The results also reveal that C. elmorei and C. hispida are not monophyletic as currently understood. In addition, 13 new combinations in the genus Circinaria are proposed.