29 resultados para Acidic beverages


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aminopolykarboksyylaatteja, kuten etyleenidiamiinitetraetikkahappoa (EDTA), on käytetty useiden vuosikymmenien ajan erinomaisen metalli-ionien sitomiskyvyn vuoksi kelatointiaineena lukuisissa sovelluksissa sekä analytiikassa että monilla teollisisuuden aloilla. Näiden yhdisteiden biohajoamattomuus on kuitenkin herättänyt huolta viime aikoina, sillä niiden on havaittu olevan hyvin pysyviä luonnossa. Tämä työ on osa laajempaa tutkimushanketta, jossa on tavoitteena löytää korvaavia kelatointiaineita EDTA:lle. Tutkimuksen aiheena on kuuden kelatointiaineen metalli-ionien sitomiskyvyn kartoitus. EDTA:a paremmin luonnossa hajoavina nämä ovat ympäristöystävällisiä ehdokkaita korvaaviksi kelatointiaineiksi useisiin sovelluksiin. Työssä tutkittiin niiden kompleksinmuodostusta useiden metalli-ionien kanssa potentiometrisella titrauksella. Metalli-ionivalikoima vaihteli hieman kelatointiaineesta riippuen sisältäen magnesium-, kalsium-, mangaani-, rauta-, kupari-, sinkki-, kadmium-, elohopea-, lyijy- ja lantaani-ionit. Tutkittavat metallit oli valittu tähtäimessä olevien sovellusten, synteesissä ilmenneiden ongelmien tai ympäristönäkökohtien perusteella. Tulokset osoittavat näiden yhdisteiden metallinsitomiskyvyn olevan jonkin verran heikompi kuin EDTA:lla, mutta kuitenkin riittävän useisiin sovelluksiin kuten sellunvalkaisuprosessiin. Myrkyllisten raskasmetallien, kadmiumin, elohopen ja lyijyn kohdalla EDTA:a heikompi sitoutuminen on eduksikin, koska se yhdistettynä parempaan biohajoavuuteen saattaa alentaa tutkittujen yhdisteiden kykyä mobilisoida kyseisiä metalleja sedimenteistä. Useimmilla tutkituista yhdisteistä on ympäristönäkökulmasta etuna myös EDTA:a pienempi typpipitoisuus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, novel methodologies for the determination of antioxidative compounds in herbs and beverages were developed. Antioxidants are compounds that can reduce, delay or inhibit oxidative events. They are a part of the human defense system and are obtained through the diet. Antioxidants are naturally present in several types of foods, e.g. in fruits, beverages, vegetables and herbs. Antioxidants can also be added to foods during manufacturing to suppress lipid oxidation and formation of free radicals under conditions of cooking or storage and to reduce the concentration of free radicals in vivo after food ingestion. There is growing interest in natural antioxidants, and effective compounds have already been identified from antioxidant classes such as carotenoids, essential oils, flavonoids and phenolic acids. The wide variety of sample matrices and analytes presents quite a challenge for the development of analytical techniques. Growing demands have been placed on sample pretreatment. In this study, three novel extraction techniques, namely supercritical fluid extraction (SFE), pressurised hot water extraction (PHWE) and dynamic sonication-assisted extraction (DSAE) were studied. SFE was used for the extraction of lycopene from tomato skins and PHWE was used in the extraction of phenolic compounds from sage. DSAE was applied to the extraction of phenolic acids from Lamiaceae herbs. In the development of extraction methodologies, the main parameters of the extraction were studied and the recoveries were compared to those achieved by conventional extraction techniques. In addition, the stability of lycopene was also followed under different storage conditions. For the separation of the antioxidative compounds in the extracts, liquid chromatographic methods (LC) were utilised. Two novel LC techniques, namely ultra performance liquid chromatography (UPLC) and comprehensive two-dimensional liquid chromatography (LCxLC) were studied and compared with conventional high performance liquid chromatography (HPLC) for the separation of antioxidants in beverages and Lamiaceae herbs. In LCxLC, the selection of LC mode, column dimensions and flow rates were studied and optimised to obtain efficient separation of the target compounds. In addition, the separation powers of HPLC, UPLC, HPLCxHPLC and HPLCxUPLC were compared. To exploit the benefits of an integrated system, in which sample preparation and final separation are performed in a closed unit, dynamic sonication-assisted extraction was coupled on-line to a liquid chromatograph via a solid-phase trap. The increased sensitivity was utilised in the extraction of phenolic acids from Lamiaceae herbs. The results were compared to those of achieved by the LCxLC system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All positive-strand RNA viruses utilize cellular membranes for the assembly of their replication complexes, which results in extensive membrane modification in infected host cells. These alterations act as structural and functional scaffolds for RNA replication, providing protection for the viral double-stranded RNA against host defences. It is known that different positive-strand RNA viruses alter different cellular membranes. However, the origin of the targeted membranes, the mechanisms that direct replication proteins to specific membranes and the steps in the formation of the membrane bound replication complex are not completely understood. Alphaviruses (including Semliki Forest virus, SFV), members of family Togaviridae, replicate their RNA in association with membranes derived from the endosomal and lysosomal compartment, inducing membrane invaginations called spherules. Spherule structures have been shown to be the specific sites for RNA synthesis. Four replication proteins, nsP1-nsP4, are translated as a polyprotein (P1234) which is processed autocatalytically and gives rise to a membrane-bound replication complex. Membrane binding is mediated via nsP1 which possesses an amphipathic α-helix (binding peptide) in the central region of the protein. The aim of this thesis was to characterize the association of the SFV replication complex with cellular membranes and the modification of the membranes during virus infection. Therefore, it was necessary to set up the system for determining which viral components are needed for inducing the spherules. In addition, the targeting of the replication complex, the formation site of the spherules and their intracellular trafficking were studied in detail. The results of current work demonstrate that mutations in the binding peptide region of nsP1 are lethal for virus replication and change the localization of the polyprotein precursor P123. The replication complex is first targeted to the plasma membrane where membrane invaginations, spherules, are induced. Using a specific regulated endocytosis event the spherules are internalized from the plasma membrane in neutral carrier vesicles and transported via an actin-and microtubule-dependent manner to the pericentriolar area. Homotypic fusions and fusions with pre-existing acidic organelles lead to the maturation of previously described cytopathic vacuoles with hundreds of spherules on their limiting membranes. This work provides new insights into the membrane binding mechanism of SFV replication complex and its role in the virus life cycle. Development of plasmid-driven system for studying the formation of the replication complex described in this thesis allows various applications to address different steps in SFV life cycle and virus-host interactions in the future. This trans-replication system could be applied for many different viruses. In addition, the current work brings up new aspects of membranes and cellular components involved in SFV replication leading to further understanding in the formation and dynamics of the membrane-associated replication complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxysterol binding protein (OSBP) homologues have been found in eukaryotic organisms ranging from yeast to humans. These evolutionary conserved proteins have in common the presence of an OSBP-related domain (ORD) which contains the fully conserved EQVSHHPP sequence motif. The ORD forms a barrel structure that binds sterols in its interior. Other domains and sequence elements found in OSBP-homologues include pleckstrin homology domains, ankyrin repeats and two phenylalanines in an acidic tract (FFAT) motifs, which target the proteins to distinct subcellular compartments. OSBP homologues have been implicated in a wide range of intracellular processes, including vesicle trafficking, lipid metabolism and cell signaling, but little is known about the functional mechanisms of these proteins. The human family of OSBP homologues consists of twelve OSBP-related proteins (ORP). This thesis work is focused on one of the family members, ORP1, of which two variants were found to be expressed tissue-specifically in humans. The shorter variant, ORP1S contains an ORD only. The N-terminally extended variant, ORP1L, comprises a pleckstrin homology domain and three ankyrin repeats in addition to the ORD. The two ORP1 variants differ in intracellular localization. ORP1S is cytosolic, while the ankyrin repeat region of ORP1L targets the protein to late endosomes/lysosomes. This part of ORP1L also has profound effects on late endosomal morphology, inducing perinuclear clustering of late endosomes. A central aim of this study was to identify molecular interactions of ORP1L on late endosomes. The morphological changes of late endosomes induced by overexpressed ORP1L implies involvement of small Rab GTPases, regulators of organelle motility, tethering, docking and/or fusion, in generation of the phenotype. A direct interaction was demonstrated between ORP1L and active Rab7. ORP1L prolongs the active state of Rab7 by stabilizing its GTP-bound form. The clustering of late endosomes/lysosomes was also shown to be linked to the minus end-directed microtubule-based dynein-dynactin motor complex through the ankyrin repeat region of ORP1L. ORP1L, Rab7 and the Rab7-interacting lysosomal protein (RILP) were found to be part of the same effector complex recruiting the dynein-dynactin complex to late endosomes, thereby promoting minus end-directed movement. The proteins were found to be physically close to each other on late endosomes and RILP was found to stabilize the ORP1L-Rab7 interaction. It is possible that ORP1L and RILP bind to each other through their C-terminal and N-terminal regions, respectively, when they are bridged by Rab7. With the results of this study we have been able to place a member of the uncharacterized OSBP-family, ORP1L, in the endocytic pathway, where it regulates motility and possibly fusion of late endosomes through interaction with the small GTPase Rab7.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work provides a regional-scale assessment of the changes in acidifying deposition in Finland over the past 30 years and the current pattern in the recovery of acid-sensitive lakes from acidification in relation to changes in sulphate deposition. This information is needed for documenting the ecosystem benefits of costly emission reduction policies and further actions in air pollution policy. The development of sulphate deposition in Finland reflects that of European SO2 emissions. Before the 1990s, reductions in sulphur emissions in Europe had been relatively small and sulphate deposition showed no consistent trends. Due to emission reduction measures that were then taken, sulphate deposition started to clearly decline from the late 1980s. The bulk deposition of sulphate has declined 40-60% in most parts of the country during 1990-2003. The decline in sulphate deposition exceeded the decline of base cation deposition, which resulted in a decrease in acidity and acidifying potential of deposition over the 1990s. Nitrogen deposition also decreased since the late 1980s, but less than that of sulphate, and levelling off during the 1990s. Sulphate concentrations in all types of small lakes throughout Finland have declined from the early 1990s. The relative decrease in lake sulphate concentrations (average 40-50%) during 1990-2003 was rather similar to the decline in sulphate deposition, indicating a direct response to the reduction in deposition. There are presently no indications of elevated nitrate concentrations in forested headwater lakes. Base cation concentrations are still declining in many lakes, especially in south Finland, but to a lesser extent than sulphate allowing buffering capacity (alkalinity) to increase, being significant in 60% of the study lakes. Chemical recovery is resulting in biological recovery with populations of acid-sensitive fish species increasing. The recovery has been strongest in lakes in which sulphate has been the major acidifying agent, and recovery has been the strongest and most consistent in lakes in south Finland. The recovery of lakes in central Finland and north Finland is not as widespread and strong as observed in south. Many catchments, particularly in central Finland, have a high proportion of peatlands and therefore high TOC concentrations in lakes, and runoff-induced surges of organic acids have been an important confounding factor suppressing the recovery of pH and alkalinity in these lakes. Chemical recovery is progressing even in the most acidified lakes, but the buffering capacity of many lakes is still low and still sensitive to acidic input. Further reduction in sulphur emissions are needed for the alkalinity to increase in the acidified lakes. Increasing total organic carbon (TOC) concentrations are indicated in small forest lakes in Finland. The trends appear to be related to decreasing sulphate deposition and improved acid-base status of the soil, and the rise in TOC is integral to recovery from acidification. A new challenge is climate change with potential trends in temperature, precipitation and runoff, which are expected to affect future chemical and biological recovery from acidification. The potential impact on the mobilization and leaching of organic acids may become particularly important in Finnish conditions. Long-term environmental monitoring has evidently shown the success of international emission abatement strategies. The importance and value of integrated monitoring approach including physical, chemical and biological variables is clearly indicated, and continuous environmental monitoring is needed as a scientific basis for further actions in air pollution policy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metanogeenit ovat hapettomissa oloissa eläviä arkkien pääryhmään kuuluvia mikrobeja, joiden ainutlaatuisen aineenvaihdunnan seurauksena syntyy metaania. Ilmakehässä metaani on voimakas kasvihuonekaasu. Yksi suurimmista luonnon metaanilähteistä ovat kosteikot. Pohjoisten soiden metaanipäästöt vaihtelevat voimakkaasti eri soiden välillä ja yhden suon sisälläkin, riippuen muun muassa vuodenajasta, suotyypistä ja kasvillisuudesta. Väitöskirjatyössä tutkittiin metaanipäästöjen vaihtelun mikrobiologista taustaa. Tutkimuksessa selvitettiin suotyypin, vuodenajan, tuhkalannoituksen ja turvesyvyyden vaikutusta metanogeeniyhteisöihin sekä metaanintuottoon kolmella suomalaisella suolla. Lisäksi tutkittiin ei-metanogeenisia arkkeja ja bakteereita, koska ne muodostavat metaanin tuoton lähtöaineet osana hapetonta hajotusta. Mikrobiyhteisöt analysoitiin DNA- ja RNA-lähtöisillä, polymeraasiketjureaktioon (PCR) perustuvilla menetelmillä. Merkkigeeneinä käytettiin metaanin tuottoon liittyvää mcrA-geeniä sekä arkkien ja bakteerien ribosomaalista 16S RNA-geeniä. Metanogeeniyhteisöt ja metaanintuotto erosivat huomattavasti happaman ja vähäravinteisen rahkasuon sekä ravinteikkaampien sarasoiden välillä. Rahkasuolta löytyi lähes yksinomaan Methanomicrobiales-lahkon metanogeeneja, jotka tuottavat metaania vedystä ja hiilidioksidista. Sarasoiden metanogeeniyhteisöt olivat monimuotoisempia, ja niillä esiintyi myös asetaattia käyttäviä metanogeeneja. Vuodenaika vaikutti merkittävästi metaanintuottoon. Talvella havaittiin odottamattoman suuri metaanintuottopotentiaali sekä viitteitä aktiivisista metanogeeneista. Arkkiyhteisön koostumus sen sijaan vaihteli vain vähän. Tuhkalannoitus, jonka tarkoituksena on edistää puiden kasvua ojitetuilla soilla, ei merkittävästi vaikuttanut metaanintuottoon tai -tuottajiin. Ojitetun suon yhteisöt kuitenkin muuttuivat turvesyvyyden mukaan. Vertailtaessa erilaisia PCR-menetelmiä todettiin, että kolmella mcrA-geeniin kohdistuvalla alukeparilla havaittiin pääosin samat ojitetun suon metanogeenit, mutta lajien runsaussuhteet riippuvat käytetyistä alukkeista. Soilla havaitut bakteerit kuuluivat pääjaksoihin Deltaproteobacteria, Acidobacteria ja Verrucomicrobia. Lisäksi löydettiin Crenarchaeota-pääjakson ryhmiin 1.1c ja 1.3 kuuluvia ei-metanogeenisia arkkeja. Tulokset ryhmien esiintymisestä hapettomassa turpeessa antavat lähtökohdan selvittää niiden mahdollisia vuorovaikutuksia metanogeenien kanssa. Tutkimuksen tulokset osoittivat, että metanogeeniyhteisön koostumus heijastaa metaanintuottoon vaikuttavia kemiallisia tai kasvillisuuden vaihteluita kuten suotyyppiä. Soiden metanogeenien ja niiden fysiologian parempi tuntemus voi auttaa ennustamaan ympäristömuutosten vaikutusta soiden metaanipäästöihin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular membrane alterations are hallmarks of positive-sense RNA (+RNA) virus replication. Strong evidence indicates that within these exotic compartments, viral replicase proteins engage in RNA genome replication and transcription. To date, fundamental questions such as the origin of altered membranes, mechanisms of membrane deformation and topological distribution and function of viral components, are still waiting for comprehensive answers. This study addressed some of the above mentioned questions for the membrane alterations induced during Semliki Forest virus (SFV) infection of mammalian cells. With the aid of electron and fluorescence microscopy coupled with radioactive labelling and immuno-cytochemistry techniques, our group and others showed that few hours after infection the four non structural proteins (nsP1-4) and newly synthesized RNAs of SFV colocalized in close proximity of small membrane invaginations, designated as spherules . These 50-70 nm structures were mainly detected in the perinuclear area, at the limiting membrane of modified endosomes and lysosomes, named CPV-I (cytopathic vacuoles type I). More rarely, spherules were also found at the plasma membrane (PM). In the first part of this study I present the first three-dimensional reconstruction of the CPV-I and the spherules, obtained by electron tomography after chemical or cryo-fixation. Different approaches for imaging these macromolecular assemblies to obtain better structure preservation and higher resolution are presented as unpublished data. This study provides insights into spherule organization and distribution of viral components. The results of this and other experiments presented in this thesis will challenge currently accepted models for virus replication complex formation and function. In a revisitation of our previous models, the second part of this work provides the first complete description of the biogenesis of the CPV-I. The results demonstrate that these virus-induced vacuoles, where hundreds of spherules accumulate at late stages during infection, represent the final phase of a journey initiated at the PM, which apparently serves as a platform for spherule formation. From the PM spherules were internalized by an endocytic event that required the activity of the class I PI3K, caveolin-1, cellular cholesterol and functional actin-myosin network. The resulting neutral endocytic carrier vesicle delivered the spherules to the membrane of pre-existing acidic endosomes via multiple fusion events. Microtubule based transport supported the vectorial transfer of these intermediates to the pericentriolar area where further fusions generated the CPV-I. A signal for spherule internalization was identified in one of the replicase proteins, nsP3. Infections of cells with viruses harbouring a deletion in a highly phosphorylated region of nsP3 did not result in the formation of CPV-Is. Instead, thousands of spherules remained at the PM throughout the infection cycle. Finally, the role of the replicase protein nsP2 during viral RNA replication and transcription was investigated. Three enzymatic activities, protease, NTPase and RNA-triphosphatase were studied with the aid of temperature sensitive mutants in vitro and, when possible, in vivo. The results highlighted the interplay of the different nsP2 functions during different steps of RNA replication and sub-genomic promoter regulation, and suggest that the protein could have different activities when participating in the replication complex or as a free enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein modification via enzymatic cross-linking is an attractive way for altering food structure so as to create products with increased quality and nutritional value. These modifications are expected to affect not only the structure and physico-chemical properties of proteins but also their physiological characteristics, such as digestibility in the GI-tract and allergenicity. Protein cross-linking enzymes such as transglutaminases are currently commercially available, but also other types of cross-linking enzymes are being explored intensively. In this study, enzymatic cross-linking of β-casein, the most abundant bovine milk protein, was studied. Enzymatic cross-linking reactions were performed by fungal Trichoderma reesei tyrosinase (TrTyr) and the performance of the enzyme was compared to that of transglutaminase from Streptoverticillium mobaraense (Tgase). Enzymatic cross-linking reactions were followed by different analytical techniques, such as size exclusion chromatography -Ultra violet/Visible multi angle light scattering (SEC-UV/Vis-MALLS), phosphorus nuclear magnetic resonance spectroscopy (31P-NMR), atomic force (AFM) and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). The research results showed that in both cases cross-linking of β-casein resulted in the formation of high molecular mass (MM ca. 1 350 kg mol-1), disk-shaped nanoparticles when the highest enzyme dosage and longest incubation times were used. According to SEC-UV/Vis-MALLS data, commercial β-casein was cross-linked almost completely when TrTyr and Tgase were used as cross-linking enzymes. In the case of TrTyr, high degree of cross-linking was confirmed by 31P-NMR where it was shown that 91 % of the tyrosine side-chains were involved in the cross-linking. The impact of enzymatic cross-linking of β-casein on in vitro digestibility by pepsin was followed by various analytical techniques. The research results demonstrated that enzymatically cross-linked β-casein was stable under the acidic conditions present in the stomach. Furthermore, it was found that cross-linked β-casein was more resistant to pepsin digestion when compared to that of non modified β-casein. The effects of enzymatic cross-linking of β-casein on allergenicity were also studied by different biochemical test methods. On the basis of the research results, enzymatic cross-linking decreased allergenicity of native β-casein by 14 % when cross-linked by TrTyr and by 6 % after treatment by Tgase. It can be concluded that in addition to the basic understanding of the reaction mechanism of TrTyr on protein matrix, the research results obtained in this study can have high impact on various applications like food, cosmetic, medical, textile and packing sectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholesterol is an essential component in the membranes of most eukaryotic cells, in which it mediates many functions including membrane fluidity, permeability and the formation of ordered membrane domains. In this work a fluorescent and a non-fluorescent cholesterol analog were characterized as tools to study cholesterol. Next, these analogs were used to study two specific cell biological processes that involve cholesterol, i.e. the structure and function of ordered membrane domains/rafts and intracellular cholesterol transport. The most common method for studying ordered membrane domains is by disrupting them by cholesterol depletion. Because cholesterol depletion affects many cellular functions besides those mediated by membrane domains, this procedure is highly unspecific. The cellular exchange of cholesterol by desmosterol as a tool to study ordered membrane domains was characterized. It turned out that the ability of desmosterol to form and stabilize membrane domains in vitro was weaker compared to cholesterol. This result was reinforced by atomistic scale simulations that indicated that desmosterol has a lower ordering effect on phospholipid acyl chains. Three procedures were established for exchanging cellular cholesterol by desmosterol. In cells in which desmosterol was the main sterol, insulin signaling was attenuated. The results suggest that this was caused by desmosterol destabilizing membrane rafts. Contrary to its effect on ordered membrane domains it was found that replacing cholesterol by desmosterol does not change cell growth/viability, subcellular sterol distribution, Golgi integrity, secretory pathway, phospholipid composition and membrane fluidity. Together these results suggest that exchanging cellular cholesterol by desmosterol provides a selective tool for perturbing rafts. Next, the importance of cholesterol for the structure and function of caveolae was analyzed by exchanging the cellular cholesterol by desmosterol. The sterol exchange reduced the stability of caveolae as determined by detergent resistance of caveolin-1 and heat resistance of caveolin-1 oligomers. Also the sterol exchange led to aberrations in the caveolar structure; the morphology of caveolae was altered and there was a larger variation in the amount of caveolin-1 molecules per caveola. These results demonstrate that cholesterol is important for caveolar stability and structural homogeneity. In the second part of this work a fluorescent cholesterol analog was characterized as a tool to study cholesterol transport. Tight control of the intracellular cholesterol distribution is essential for many cellular processes. An important mechanism by which cells regulate their membrane cholesterol content is by cholesterol traffic, mostly from the plasma membrane to lipid droplets. The fluorescent sterol probe BODIPY-cholesterol was characterized as a tool to analyze cholesterol transport between the plasma membrane, the endoplasmic reticulum (ER) and lipid droplets. The behavior of BODIPY-cholesterol was compared to that of natural sterols, using both biochemical and live-cell microcopy assays. The results show that the transport kinetics of BODIPY-cholesterol between the plasma membrane, the ER and lipid droplets is similar to that of unesterified cholesterol. Next, BODIPY-cholesterol was utilized to analyze the importance of oxysterol binding protein related proteins (ORPs) for cholesterol transport between the plasma membrane, the ER, and lipid droplets in mammalian cells. By overexpressing all human ORPs it turned out that especially ORP1S and ORP2 enhanced sterol transport from the plasma membrane to lipid droplets. Our results suggest that the increased sterol transport takes place between the plasma membrane and ER and not between the ER and lipid droplets. Simultaneous knockdown of ORP1S and ORP2 resulted in a moderate but significant inhibition of sterol traffic from the plasma membrane to ER and lipid droplets, suggesting a physiological role for these ORPs in this process. The two phenylalanines in an acidic tract (FFAT) motif in ORPs, which mediates interaction with vesicle associated membrane protein associated proteins (VAPs) in the ER, was not necessary for mediating sterol transport. However, VAP silencing slowed down sterol transport, most likely by destabilizing ORPs containing a FFAT motif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tutkielman kirjallisuusosassa perehdyttiin vehnän, rukiin ja ohran, eli Triticeaeprolamiinien erityisasemaan keliakianäkökulmasta tarkasteltuna ja prolamiinien hydrolyysiin proliinispesifeillä entsyymeillä. Lisäksi tarkasteltiin prolamiinien immunologisia määritysmenetelmiä. Keliakiassa haitalliset gluteenipeptidit sisältävät runsaasti proliinia ja ovat hankalia pilkkoa muilla kuin proliinispesifeillä peptidaaseilla. Suurin osa immunologisen reaktion aiheuttavista gluteenilähtöisistä peptideistä voidaan pilkkoa idätetyn viljan endogeenisilla entsyymeillä happamissa olosuhteissa, mutta jäljellejäävä prolamiinipitoisuus ylittää edelleen gluteenittomille tuotteille sallitun rajan. Kokeellisen työn tavoitteena oli eliminoida happamalla mallasinkubaatiolla valmistettujen vehnä-, ohra- ja ruismallasautolysaattien sisältämä jäännösprolamiini Aspergillus niger -homeen tuottamalla proliinispesifillä endopeptidaasilla (AN-PEP) siten, että hydrolysaattia voitaisiin käyttää gluteenittomissa leivontasovelluksissa. Proteiinien hydrolyysiä tarkkailtiin kokoekskluusiokromatografialla (SEC), vapaan aminotypen (FAN) muodostumisena ja SDS-PAGE-elektroforeesilla. Jäännösprolamiinien pilkkoutumista seurattiin immunologisella R5-ELISA-menetelmällä. AN-PEP-inkubaatiolla saatiin aikaan voimakasta prolamiinien pilkkoutumista; mallasautolysaattien jäännösprolamiinista pilkkoutui yli 96 %. SEC- ja FAN-analyysien perusteella inkubaatioaikaa kannatti jatkaa yli 4 h, jolloin polypeptidit pilkkoutuivat edelleen pienemmiksi hydrolyysituotteiksi. Vehnä- ja ruismallashydrolysaattien prolamiinipitoisuuden todettiin laskevan 22 h inkubaation aikana alle tason 100 mg/kg R5-ELISA-menetelmällä määritettynä. Matalimmat prolamiinipitoisuudet saavutettiin AN-PEP-pitoisuudella 35 ?l / g mallasautolysaattia. Codex Alimentarius -komission säädöksen mukaan keliakiaruokavalioon soveltuvat ns. erittäin vähägluteeniset tuotteet saavat sisältää gluteenia enintään 100 mg/kg. Erityisesti AN-PEP-käsiteltyä ruismallasraaka-ainetta voitaisiin mahdollisesti käyttää tuomaan rukiista aromia gluteenittomiin leipiin. Ennen kuin mallashydrolysaatit ovat valmiita kaupallisiin sovelluksiin, on tarkasteltava niiden todellisia mahdollisuuksia parantaa elintarvikkeiden makua ja aromia sekä todettava uuden teknologian turvallisuus keliaakikoille.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS1) is an autoimmune disease caused by a loss-of function mutation in the autoregulator gene (AIRE). Patients with APECED suffer from chronic mucocutaneous candidosis (CMC) of the oral cavity and oesophagus often since early childhood. The patients are mainly colonized with Candida albicans and decades of exposure to antifungal agents have lead to the development of clinical and microbiological resistance in the treatment of CMC in the APECED patient population in Finland. A high incidence of oral squamous cell carcinoma is associated with oral CMC lesions in the APECED patients over the age of 25. The overall aim of this study was firstly, to investigate the effect of long-term azole exposure on the metabolism of oral C. albicans isolates from APECED patients with CMC and secondly, to analyse the specific molecular mechanisms that are responsible for these changes. The aim of the first study was to examine C. albicans strains from APECED patients and the level of cross-resistance to miconazole, the recommended topical compound for the treatment of oral candidosis. A total of 16% of the strains had decreased susceptibility to miconazole and all of these isolates had decreased susceptibility to fluconazole. Miconazole MICs also correlated with MICs to voriconazole and posaconazole. A significant positive correlation between the years of miconazole exposure and the MICs to azole antifungal agents was also found. These included azoles the patients had not been exposed to. The aim of our second study was to determine if the APECED patients are continuously colonized with the same C. albicans strains despite extensive antifungal treatment and to gain a deeper insight into the genetic changes leading to azole resistance. The strains were typed using MLST and our results confirmed that all patients were persistently colonized with the same or a genetically related strain despite antifungal treatment between isolations. No epidemic strains were found. mRNA expression was analysed by Northern blotting, protein level by western blotting, and TAC1 and ERG11 genes were sequenced. The main molecular mechanisms resulting in azole resistance were gain-of-function mutations in TAC1 leading to over expression of CDR1 and CDR2, genes linked to azole resistance. Several strains had also developed point mutations in ERG11, another gene linked to azole resistance. In the third study we used gas chromatography to test whether the level of carcinogenic acetaldehyde produced by C. albicans strains isolated from APECED patients were different from the levels produced by strains isolated from healthy controls and oral carcinoma patients. Acetaldehyde is a carcinogenic product of alcohol fermentation and metabolism in microbes associated with cancers of the upper digestive tract. In yeast, acetaldehyde is a by-product of the pyruvate bypass that converts pyruvate into acetyl-CoA during fermentation. Our results showed that strains isolated from APECED patients produced mutagenic levels of acetaldehyde in the presence of glucose (100mM, 18g/l) and the levels produced were significantly higher than those from strains isolated from controls and oral carcinoma patients. All strains in the study, however, were found to produce mutagenic levels of acetaldehyde in the presence of ethanol (11mM). The glucose and ethanol levels used in this study are equivalent to those found in food and beverages and our results highlight the role of dietary sugars and ethanol on carcinogenesis. The aims of our fourth study were to research the effect of growth conditions in the levels of acetaldehyde produced by C. albicans and to gain deeper insight into the role of different genes in the pyruvate-bypass in the production of high acetaldehyde levels. Acetaldehyde production in the presence of glucose increased by 17-fold under moderately hypoxic conditions compared to the levels produced under normoxic conditions. Under moderately hypoxic conditions acetaldehyde levels did not correlate with the expression of ADH1 and ADH2, genes catalyzing the oxidation of ethanol to acetaldehyde, or PDC11, the gene catalyzing the oxidation of pyruvate to acetaldehyde but correlated with the expression of down-stream genes ALD6 and ACS1. Our results highlight a problem where indiscriminate use of azoles may influence azole susceptibility and lead to the development of cross-resistance. Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations that occur in strains may lead to the development of azole-resistant isolates and metabolic changes leading to increased production of carcinogenic acetaldehyde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The area of Östersundom (29,1 square kilometers) was attached to Helsinki in the beginning of the year 2009. Östersundom is formed mostly from the municipality of Sipoo, and partly from the city of Vantaa. Nowadays Östersundom is still quite rural, but city planning has already started, and there are plans to develop Östersundom into a district with 45 000 inhabitants. In this study, the headwaters, streams and small lakes of Östersundom were studied to produce information as a basis for city planning. There are six main streams and five small lakes in Östersundom. The main methodology used in this study was the examination of the physical and the chemical quality of the water. The hygienic quality of the water was also studied. It was also examined whether the waters are in their natural state, or have they been treated and transformed by man. In addition, other factors affecting the waters were examined. Geographical information data was produced as a result of this work. Östersundom is the main area looked at in this study, some factors are examined in the scope of the catchment areas. Water samples were collected in three sampling periods: 31.8 4.9.2009, 3. 4.2.2010, and 10. 14.4.2010. There were 20 sampling points in Östersundom (5 in small lakes, 15 in streams). In the winter sampling period, only six samples were collected, from which one was taken from a small lake. Field measurements associated with water sampling included water temperature, oxygen concentration, pH and electoral conductivity. Water samples were analyzed in the Laboratories of Physical Geography in the University of Helsinki for the following properties: total suspended solids (TSS), total dissolved substances (TDS), organic matter, alkalinity, colour, principal anions and cations and trace elements. Metropolilab analyzed the amount of faecal coliform bacteria in the samples. The waters in Östersundom can be divided to three classes according to water quality and other characteristics: the upper course of the streams, the lower course of the streams and the small lakes. The streams in their upper course are in general acidic, and their acid neutralization capacity is low. The proportion of the organic matter is high. Also the concentrations of aluminium and iron tend to be high. The streams in the lower course have acidity closer to neutral, and the buffering capacity is good. The amounts of TSS and TDS are high, and as a result, the concentrations of many ions and trace elements are high as well. Bacteria were detected at times in the streams of the lower course. Four of the five small lakes in Östersundom are humic and acidic. TSS and TDS concentrations tend to be low, but the proportion of organic matter is often high. There were no bacteria in the small lakes. The fifth small lake (Landbonlampi) differs from the others by its water colour, which is very clear. This lake is very acidic, and its buffering capacity is extremely low. Compared to the headwaters in Finland in general, the concentrations of many ions and trace elements are higher in Östersundom. On the other hand, the characteristics of water were different according to the classification upper course streams, lower course streams, and small lakes. Generally, the best water quality was observed in the stream of Gumbölenpuro and in the lakes Storträsk, Genaträsk, Hältingträsk and Landbonlampi. Several valuable waters in their natural state were discovered from the area. The most representative example is the stream of Östersundominpuro in its lower course, where the stream flows through a broad-leaf forest area. The small lakes of Östersundom, and the biggest stream Krapuoja, with its meandering channel, are also valuable in their natural state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactobacillus rhamnosus GG is a probiotic bacterium that is known worldwide. Since its discovery in 1985, the health effects and biology of this health-promoting strain have been researched at an increasing rate. However, knowledge of the molecular biology responsible for these health effects is limited, even though research in this area has continued to grow since the publication of the whole genome sequence of L. rhamnosus GG in 2009. In this thesis, the molecular biology of L. rhamnosus GG was explored by mapping the changes in protein levels in response to diverse stress factors and environmental conditions. The proteomics data were supplemented with transcriptome level mapping of gene expression. The harsh conditions of the gastro-intestinal tract, which involve acidic conditions and detergent-like bile acids, are a notable challenge to the survival of probiotic bacteria. To simulate these conditions, L. rhamnosus GG was exposed to a sudden bile stress, and several stress response mechanisms were revealed, among others various changes in the cell envelope properties. L. rhamnosus GG also responded in various ways to mild acid stress, which probiotic bacteria may face in dairy fermentations and product formulations. The acid stress response of L. rhamnosus GG included changes in central metabolism and specific responses related to the control of intracellular pH. Altogether, L. rhamnosus GG was shown to possess a large repertoire of mechanisms for responding to stress conditions, which is a beneficial character of a probiotic organism. Adaptation to different growth conditions was studied by comparing the proteome level responses of L. rhamnosus GG to divergent growth media and to different phases of growth. Comparing different growth phases revealed that the metabolism of L. rhamnosus GG is modified markedly during shift from the exponential to the stationary phase of growth. These changes were seen both at proteome and transcriptome levels and in various different cellular functions. When the growth of L. rhamnosus GG in a rich laboratory medium and in an industrial whey-based medium was compared, various differences in metabolism and in factors affecting the cell surface properties could be seen. These results led us to recommend that the industrial-type media should be used in laboratory studies of L. rhamnosus GG and other probiotic bacteria to achieve a similar physiological state for the bacteria as that found in industrial products, which would thus yield more relevant information about the bacteria. In addition, an interesting phenomenon of protein phosphorylation was observed in L. rhamnosus GG. Phosphorylation of several proteins of L. rhamnosus GG was detected, and there were hints that the degree of phosphorylation may be dependent on the growth pH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moonlighting functions have been described for several proteins previously thought to localize exclusively in the cytoplasm of bacterial or eukaryotic cells. Moonlighting proteins usually perform conserved functions, e. g. in glycolysis or as chaperonins, and their traditional and moonlighting function(s) usually localize to different cell compartments. The most characterized moonlighting proteins in Grampositive bacteria are the glycolytic enzymes enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which function in bacteria-host interactions, e. g. as adhesins or plasminogen receptors. Research on bacterial moonlighting proteins has focused on Gram-positive bacterial pathogens, where many of their functions have been associated with bacterial virulence. In this thesis work I show that also species of the genus Lactobacillus have moonlighting proteins that carry out functions earlier associated with bacterial virulence only. I identified enolase, GAPDH, glutamine synthetase (GS), and glucose-6-phosphate isomerase (GPI) as moonlighting proteins of Lactobacillus crispatus strain ST1 and demonstrated that they are associated with cell surface and easily released from the cell surface into incubation buffer. I also showed that these lactobacillar proteins moonlight either as adhesins with affinity for basement membrane and extracellular matrix proteins or as plasminogen receptors. The mechanisms of surface translocation and anchoring of bacterial moonlighting proteins have remained enigmatic. In this work, the surface localization of enolase, GAPDH, GS and GPI was shown to depend on environmental factors. The members of the genus Lactobacillus are fermentative organisms that lower the ambient pH by producing lactic acid. At acidic pH enolase, GAPDH, GS and GPI were associated with the cell surface, whereas at neutral pH they were released into the buffer. The release did not involve de novo protein synthesis. I showed that purified recombinant His6-enolase, His6-GAPDH, His6-GS and His6-GPI reassociate with cell wall and bind in vitro to lipoteichoic acids at acidic pH. The in-vitro binding of these proteins localizes to cell division septa and cell poles. I also show that the release of moonlighting proteins is enhanced in the presence of cathelicidin LL- 37, which is an antimicrobial peptide and a central part of the innate immunity defence. I found that the LL-37-induced detachment of moonlighting proteins from cell surface is associated with cell wall permeabilization by LL-37. The results in this thesis work are compatible with the hypothesis that the moonlighting proteins of L. crispatus associate to the cell wall via electrostatic or ionic interactions and that they are released into surroundings in stress conditions. Their surface translocation is, at least in part, a result from their release from dead or permeabilized cells and subsequent reassociation onto the cell wall. The results of this thesis show that lactobacillar cells rapidly change their surface architecture in response to environmental factors and that these changes influence bacterial interactions with the host.