300 resultados para 1995_03171550 TM-10 4500604
Resumo:
B. cereus is one of the most frequent occurring bacteria in foods . It produces several heat-labile enterotoxins and one stable non-protein toxin, cereulide (emetic), which may be pre-formed in food. Cereulide is a heat stable peptide whose structure and mechanism of action were in the past decade elucidated. Until this work, the detection of cereulide was done by biological assays. With my mentors, I developed the first quantitative chemical assay for cereulide. The assay is based on liquid chromatography (HPLC) combined with ion trap mass spectrometry and the calibration is done with valinomycin and purified cereulide. To detect and quantitate valinomycin and cereulide, their [NH4+] adducts, m/z 1128.9 and m/z 1171 respectively, were used. This was a breakthrough in the cereulide research and became a very powerful tool of investigation. This tool made it possible to prove for the first time that the toxin produced by B. cereus in heat-treated food caused human illness. Until this thesis work (Paper II), cereulide producing B. cereus strains were believed to represent a homogenous group of clonal strains. The cereulide producing strains investigated in those studies originated mostly from food poisoning incidents. We used strains of many origins and analyzed them using a polyphasic approach. We found that the cereulide producing B. cereus strains are genetically and biologically more diverse than assumed in earlier studies. The strains diverge in the adenylate kinase (adk) gene (two sequence types), in ribopatterns obtained with EcoRI and PvuII (three patterns), tyrosin decomposition, haemolysis and lecithine hydrolysis (two phenotypes). Our study was the first demonstration of diversity within the cereulide producing strains of B. cereus. To manage the risk for cereulide production in food, understanding is needed on factors that may upregulate cereulide production in a given food matrix and the environmental factors affecting it. As a contribution towards this direction, we adjusted the growth environment and measured the cereulide production by strains selected for diversity. The temperature range where cereulide is produced was narrower than that for growth for most of the producer strains. Most cereulide was by most strains produced at room temperature (20 - 23ºC). Exceptions to this were two faecal isolates which produced the same amount of cereulide from 23 ºC up until 39ºC. We also found that at 37º C the choice of growth media for cereulide production differed from that at the room temperature. The food composition and temperature may thus be a key for understanding cereulide production in foods as well as in the gut. We investigated the contents of [K+], [Na+] and amino acids of six growth media. Statistical evaluation indicated a significant positive correlation between the ratio [K+]:[Na+] and the production of cereulide, but only when the concentrations of glycine and [Na+] were constant. Of the amino acids only glycine correlated positively with high cereulide production. Glycine is used worldwide as food additive (E 640), flavor modifier, humectant, acidity regulator, and is permitted in the European Union countries, with no regulatory quantitative limitation, in most types of foods. B. subtilis group members are endospore-forming bacteria ubiquitous in the environment, similar to B. cereus in this respect. Bacillus species other than B. cereus have only sporadically been identified as causative agents of food-borne illnesses. We found (Paper IV) that food-borne isolates of B. subtilis and B. mojavensis produced amylosin. It is possible that amylosin was the agent responsible for the food-borne illness, since no other toxic substance was found in the strains. This is the first report on amylosin production by strains isolated from food. We found that the temperature requirement for amylosin production was higher for the B. subtilis strain F 2564/96, a mesophilic producer, than for B. mojavensis strains eela 2293 and B 31, psychrotolerant producers. We also found that an atmosphere with low oxygen did not prevent the production of amylosin. Ready-to-eat foods packaged in micro-aerophilic atmosphere and/or stored at temperatures above 10 °C, may thus pose a risk when toxigenic strains of B. subtilis or B. mojavensis are present.
Resumo:
Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.
Resumo:
The particles of Potato virus A (PVA; genus Potyvirus) are helically constructed filaments that contain multiple copies of a single type of coat-protein (CP) subunit and a single copy of genome-linked protein (VPg), attached to one end of the virion. Examination of negatively-stained virions by electron microscopy revealed flexuous, rod-shaped particles with no obvious terminal structures. It is known that particles of several filamentous plant viruses incorporate additional minor protein components, forming stable complexes that mediate particle disassembly, movement or transmission by insect vectors. The first objective of this work was to study the interaction of PVA movement-associated proteins with virus particles and how these interactions contribute to the morphology and function of the virus particles. Purified particles of PVA were examined by atomic force microscopy (AFM) and immuno-gold electron microscopy. A protrusion was found at one end of some of the potyvirus particles, associated with the 5' end of the viral RNA. The tip contained two virus-encoded proteins, the genome-linked protein (VPg) and the helper-component proteinase (HC-Pro). Both are required for cell-to-cell movement of the virus. Biochemical and electron microscopy studies of purified PVA samples also revealed the presence of another protein required for cell-to-cell movement the cylindrical inclusion protein (CI), which is also an RNA helicase/ATPase. Centrifugation through a 5-40% sucrose gradient separated virus particles with no detectable CI to a fraction that remained in the gradient, from the CI-associated particles that went to the pellet. Both types of particles were infectious. AFM and translation experiments demonstrated that when the viral CI was not present in the sample, PVA virions had a beads-on-a-string phenotype, and RNA within the virus particles was more accessible to translation. The second objective of this work was to study phosphorylation of PVA movement-associated and structural proteins (CP and VPg) in vitro and, if possible, in vivo. PVA virion structural protein CP is necessary for virus cell-to-cell movement. The tobacco protein kinase CK2 was identified as a kinase phosphorylating PVA CP. A major site of CK2 phosphorylation in PVA CP was identified as a single threonine within a CK2 consensus sequence. Amino acid substitutions affecting the CK2 consensus sequence in CP resulted in viruses that were defective in cell-to-cell and long-distance movement. The CK2 regulation of virion assembly and cell-to-cell movement by phosphorylation of CP was possibly due to the inhibition of CP binding to viral RNA. Four putative phosphorylation sites were identified from an in vitro phosphorylated recombinant VPg. All four were mutated and the spread of mutant viruses in two different host plants was studied. Two putative phosphorylation site mutants (Thr45 and Thr49) had phenotypes identical to that of a wild type (WT) virus infection in both Nicotiana benthamiana and N. tabacum plants. The other two mutant viruses (Thr132/Ser133 and Thr168) showed different phenotypes with increased or decreased accumulation rates, respectively, in inoculated and the first two systemically infected leaves of N. benthamiana. The same mutants were occasionally restricted to single cells in N. tabacum plants, suggesting the importance of these amino acids in the PVA infection cycle in N. tabacum.
Resumo:
Cardiovascular diseases (CVDs) are the leading cause of mortality in the world. Studies of the impact of single nutrients on the risk for CVD have often provided inconclusive results, and recent research in nutritional epidemiology with a more holistic whole-diet approach has proven fruitful. Moreover, dietary habits in childhood and adolescence may play a role in later health and disease, either independently or by tracking into adulthood. The main aims of this study were to find childhood and adulthood determinants of adulthood diet, to identify dietary patterns present among the study population and to study the associations between long-term food choices and cardiovascular health in young Finnish adults. The study is a part of the multidisciplinary Cardiovascular Risk in Young Finns study, which is an ongoing, prospective cohort study with a 21-year follow-up. At baseline in 1980, the subjects were children and adolescents aged 3 to 18 years (n included in this study = 1768), and young adults aged 24 to 39 years at the latest follow-up study in 2001 (n = 1037). Food consumption and nutrient intakes were assessed with repeated 48-hour dietary recalls. Other determinations have included comprehensive risk factor assessments using blood tests, physical measurements and questionnaires. In the latest follow-up, ultrasound examinations were performed to study early atherosclerotic vascular changes. The average intakes showed substantial changes since 1980. Intakes of fat and saturated fat had decreased, whereas the consumption of fruits and vegetables had increased. Intake of fat and consumption of vegetables in childhood and physical activity in adulthood were important health behavioural determinants of adult diet. Additionally, a principal component analysis was conducted to identify major dietary patterns at each study point. A similar set of two major patterns was recognised throughout the study. The traditional dietary pattern positively correlated with the consumption of traditional Finnish foods, such as rye, potatoes, milk, butter, sausages and coffee, and negatively correlated with fruit, berries and dairy products other than milk. This type of diet was independently associated with several risk factors of CVD, such as total and low-density lipoprotein cholesterol, apolipoprotein B and C-reactive protein concentrations among both genders, as well as with systolic blood pressure and insulin levels among women. The traditional pattern was also independently associated with intima media thickness (IMT), a subclinical predictor of CVD, in men but not in women. The health-conscious pattern, predominant among female subjects, non-smokers and urbanites, was characterised by more health-conscious food choices such as vegetables, legumes and nuts, tea, rye, fish, cheese and other dairy products, as well as by the consumption of alcoholic beverages. This pattern was inversely, but less strongly, associated with cardiovascular risk factors. Tracking of the dietary pattern scores was observed, particularly among subjects who were adolescents at baseline. Moreover, a long-term high intake of protein concurrent with a low intake of fat was positively associated with IMT. These findings suggest that food behaviour and food choices are to some extent established as early as in childhood or adolescence and may significantly track into adulthood. Long-term adherence to traditional food choices seems to increase the risk for developing CVD, especially among men. Those with intentional or unintentional low fat diets, but with high intake of protein may also be at increased risk for CVD. The findings offer practical, food-based information on the relationship between diet and CVD and encourage further use of the whole-diet approach in epidemiological research. The results support earlier findings that long-term food choices play a role in the development of CVD. The apparent influence of childhood habits is important to bear in mind when planning educational strategies for the primary prevention of CVD. Further studies on food choices over the entire lifespan are needed.
Resumo:
Rhizoremediation is the use of microbial populations present in the rhizosphere of plants for environmental cleanup. The idea of this work was that bacteria living in the rhizosphere of a nitrogen-fixing leguminous plant, goat's rue (Galega orientalis), could take part in the degradation of harmful monoaromatic hydrocarbons, such as benzene, toluene and xylene (BTEX), from oil-contaminated soils. In addition to chemical (e.g. pollutant concentration) and physical (e.g. soil structure) information, the knowledge of biological aspects (e.g. bacteria and their catabolic genes) is essential when developing the rhizoremediation into controlled and effective bioremediation practice. Therefore, the need for reliable biomonitoring methods is obvious. The main aims of this thesis were to evaluate the symbiotic G. orientalis - Rhizobium galegae system for rhizoremediation of oil-contaminated soils, to develop molecular methods for biomonitoring, and to apply these methods for studying the microbiology of rhizoremediation. In vitro, Galega plants and rhizobia remained viable in m-toluate concentrations up to 3000 mg/l. Plant growth and nodulation were inhibited in 500 mg/l m-toluate, but were restored when plants were transferred to clean medium. In the greenhouse, Galega showed good growth, nodulation and nitrogen fixation, and developed a strong rhizosphere in soils contaminated with oil or spiked with 2000 mg/l m-toluate. The high aromatic tolerance of R. galegae and the viability of Galega plants in oil-polluted soils proved this legume system to be a promising method for the rhizoremediation of oil-contaminated soils. Molecular biomonitoring methods were designed and/or developed further for bacteria and their degradation genes. A combination of genomic fingerprinting ((GTG)5-PCR), taxonomic ribotyping of 16S rRNA genes and partial 16S rRNA gene sequencing were chosen for molecular grouping of culturable, heterogeneous rhizosphere bacteria. PCR primers specific for the xylE gene were designed for TOL plasmid detection. Amplified enzyme-coding DNA restriction analysis (AEDRA) with AluI was used to profile both TOL plasmids (xylE primers) and, in general, aromatics-degrading plasmids (C230 primers). The sensitivity of the direct monitoring of TOL plasmids in soil was enhanced by nested C23O-xylE-PCR. Rhizosphere bacteria were isolated from the greenhouse and field lysimeter experiments. High genetic diversity was observed among the 50 isolated, m-toluate tolerating rhizosphere bacteria in the form of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. The inoculum Pseudomonas putida PaW85/pWW0 was not found in the rhizosphere samples. Even if there were no ecological niches available for the bioaugmentation bacterium itself, its conjugative catabolic plasmid might have had some additional value for other bacterial species and thus, for rhizoremediation. Only 10 to 20% of the isolated, m-toluate tolerating bacterial strains were also able to degrade m-toluate. TOL plasmids were a major group of catabolic plasmids among these bacteria. The ability to degrade m-toluate by using enzymes encoded by a TOL plasmid was detected only in species of the genus Pseudomonas, and the best m-toluate degraders were these Pseudomonas species. Strain-specific differences in degradation abilities were found for P.oryzihabitans and P. migulae: some of these strains harbored a TOL plasmid - a new finding observed in this work, indicating putative horizontal plasmid transfer in the rhizosphere. One P. oryzihabitans strain harbored the pWW0 plasmid that had probably conjugated from the bioaugmentation Pseudomonas. Some P. migulae and P. oryzihabitans strains seemed to harbor both the pWW0- and the pDK1-type TOL plasmid. Alternatively, they might have harbored a TOL plasmid with both the pWW0- and the pDK1-type xylE gene. The breakdown of m-toluate by gram-negative bacteria was not restricted to the TOL pathway. Also some gram-positive Rhodococcus erythropolis and Arthrobacter aurescens strains were able to degrade m-toluate in the absence of a TOL plasmid. Three aspects of the rhizosphere effect of G. orientalis were manifested in oil-contaminated soil in the field: 1) G. orientalis and Pseudomonas bioaugmentation increased the amount of rhizosphere bacteria. G. orientalis especially together with Pseudomonas bioaugmentation increased the numbers of m-toluate utilizing and catechol positive bacteria indicating an increase in degradation potential. 2) Also the bacterial diversity, when measured as the amount of ribotypes, was increased in the Galega rhizosphere with or without Pseudomonas bioaugmentation. However, the diversity of m-toluate utilizing bacteria did not significantly increase. At the community level, by using the 16S rRNA gene PCR-DGGE method, the highest diversity of species was also observed in vegetated soils compared with non-vegetated soils. Diversified communities may best guarantee the overall success in rhizoremediation by offering various genetic machineries for catabolic processes. 3) At the end of the experiment, no TOL plasmid could be detected by direct DNA analysis in soil treated with both G. orientalis and Pseudomonas. The detection limit for TOL plasmids was encountered indicating decreased amount of degradation plasmids and thus, the success of rhizoremediation. The use of G. orientalis for rhizoremediation is unique. In this thesis new information was obtained about the rhizosphere effect of Galega orientalis in BTEX contaminated soils. The molecular biomonitoring methods can be applied for several purposes within environmental biotechnology, such as for evaluating the intrinsic biodegradation potential, monitoring the enhanced bioremediation, and estimating the success of bioremediation. Environmental protection by using nature's own resources and thus, acting according to the principle of sustainable development, would be both economically and environmentally beneficial for society. Keywords: molecular biomonitoring, genetic fingerprinting, soil bacteria, bacterial diversity, TOL plasmid, catabolic genes, horizontal gene transfer, rhizoremediation, rhizosphere effect, Galega orientalis, aerobic biodegradation, petroleum hydrocarbons, BTEX
Resumo:
B. cereus is a gram-positive bacterium that possesses two different forms of life:the large, rod-shaped cells (ca. 0.002 mm by 0.004 mm) that are able to propagate and the small (0.001 mm), oval shaped spores. The spores can survive in almost any environment for up to centuries without nourishment or water. They are insensitive towards most agents that normally kill bacteria: heating up to several hours at 90 ºC, radiation, disinfectants and extreme alkaline (≥ pH 13) and acid (≤ pH 1) environment. The spores are highly hydrophobic and therefore make them tend to stick to all kinds of surfaces, steel, plastics and live cells. In favorable conditions the spores of B. cereus may germinate into vegetative cells capable of producing food poisoning toxins. The toxins can be heat-labile protein formed after ingestion of the contaminated food, inside the gastrointestinal tract (diarrhoeal toxins), or heat stable peptides formed in the food (emesis causing toxin, cereulide). Cereulide cannot be inactivated in foods by cooking or any other procedure applicable on food. Cereulide in consumed food causes serious illness in human, even fatalities. In this thesis, B. cereus strains originating from different kinds of foods and environments and 8 different countries were inspected for their capability of forming cereulide. Of the 1041 isolates from soil, animal feed, water, air, used bedding, grass, dung and equipment only 1.2 % were capable of producing cereulide, whereas of the 144 isolates originating from foods 24 % were cereulide producers. Cereulide was detected by two methods: by its toxicity towards mammalian cells (sperm assay) and by its peculiar chemical structure using liquid-chromatograph-mass spectrometry equipment. B. cereus is known as one of the most frequent bacteria occurring in food. Most foods contain more than one kind of B. cereus. When randomly selected 100 isolates of B. cereus from commercial infant foods (dry formulas) were tested, 11% of these produced cereulide. Considering a frequent content of 103 to 104 cfu (colony forming units) of B. cereus per gram of infant food formula (dry), it appears likely that most servings (200 ml, 30 g of the powder reconstituted with water) may contain cereulide producers. When a reconstituted infant formula was inoculated with >105 cfu of cereulide producing B. cereus per ml and left at room temperature, cereulide accumulated to food poisoning levels (> 0.1 mg of cereulide per serving) within 24 hours. Paradoxically, the amount of cereulide (per g of food) increased 10 to 50 fold when the food was diluted 4 - 15 fold with water. The amount of the produced cereulide strongly depended on the composition of the formula: most toxin was formed in formulas with cereals mixed with milk, and least toxin in formulas based on milk only. In spite of the aggressive cleaning practices executed by the modern dairy industry, certain genotypes of B. cereus appear to colonise the silos tanks. In this thesis four strategies to explain their survival of their spores in dairy silos were identified. First, high survival (log 15 min kill ≤ 1.5) in the hot alkaline (pH >13) wash liquid, used at the dairies for cleaning-in-place. Second, efficient adherence of the spores to stainless steel from cold water. Third, a cereulide producing group with spores characterized by slow germination in rich medium and well preserved viability when exposed to heating at 90 ºC. Fourth, spores capable of germinating at 8 ºC and possessing the psychrotolerance gene, cspA. There were indications that spores highly resistant to hot 1% sodium hydroxide may be effectively inactivated by hot 0.9% nitric acid. Eight out of the 14 dairy silo tank isolates possessing hot alkali resistant spores were capable of germinating and forming biofilm in whole milk, not previously reported for B. cereus. In this thesis it was shown that cereulide producing B. cereus was capable of inhibiting the growth of cereulide non-producing B. cereus occurring in the same food. This phenomenon, called antagonism, has long been known to exist between B. cereus and other microbial species, e.g. various species of Bacillus, gram-negative bacteria and plant pathogenic fungi. In this thesis intra-species antagonism of B. cereus was shown for the first time. This brother-killing did not depend on the cereulide molecule, also some of the cereulide non-producers were potent antagonists. Interestingly, the antagonistic clades were most frequently found in isolates from food implicated with human illness. The antagonistic property was therefore proposed in this thesis as a novel virulence factor that increases the human morbidity of the species B. cereus, in particular of the cereulide producers.
Resumo:
Despite of improving levels of hygiene, the incidence of registered food borne disease has been at the same level for many years: there were 40 to 90 epidemics in which 1000-9000 persons contracted food poisoning through food or drinking water in Finland. Until the year 2004 salmonella and campylobacter were the most common bacterial causes of food borne diseases, but in years 2005-2006 Bacillus cereus was the most common. Similar developement has been published i.e. in Germany already in the 1990´s. One reason for this can be Bacillus cereus and its emetic toxin, cereulide. Bacillus cereus is a common environmental bacterium that contaminates raw materials of food. Otherwise than salmonella and campylobacter, Bacillus cereus is a heat resistant bacterium, capable of surviving most cooking procedures due to the production of highly thermo resistant spores. The food involved has usually been heat treated and surviving spores are the source of the food poisoning. The heat treatment induces germination of the spore and the vegetative cells then produce toxins. This doctoral thesis research focuses on developing methods for assessing and eliminating risks to food safety by cereulide producing Bacillus cereus. The biochemistry and physiology of cereulide production was investigated and the results were targeted to offer tools for minimizing toxin risk in food during the production. I developed methods for the extraction and quantitative analysis of cereulide directly from food. A prerequisite for that is knowledge of the chemical and physical properties of the toxin. Because cereulide is practically insoluble in water, I used organic solvents; methanol, ethanol and pentane for the extraction. For extraction of bakery products I used high temperature (100C) and pressure (103.4 bars). Alternaties for effective extraction is to flood the plain food with ethanol, followed by stationary equilibration at room temperature. I used this protocol for extracting cereulide from potato puree and penne. Using this extraction method it is also possible also extract cereulide from liquid food, like milk. These extraction methods are important improvement steps for studying of Bacillus cereus emetic food poisonings. Prior my work, cereulide extraction was done using water. As the result, the yield was poor and variable. To investigate suspected food poisonings, it is important to show actual toxicity of the incriminated food. Many toxins, but not cereulide, inactivate during food processing like heating. The next step is to identify toxin by chemical methods. I developed with my colleague Maria Andesson a rapid assay for the detection of cereulide toxicity, within 5 to 15 minutes. By applying this test it is possible to rapidly detect which food was causing the food poisoning. The chemical identification of cereulide was achieved using mass spectrometry. I used cereulide specific molecular ions, m/z (+/-0.3) 1153.8 (M+H+), 1171.0 (M+NH4+), 1176.0 (M+Na+) and 1191.7 (M+K+) for reliable identification. I investigated foods to find out their amenability to accumulate cereulide. Cereulide was formed high amounts (0.3 to 5.5 microg/g wet wt) when of cereulide producing B. cereus strains were present in beans, rice, rice-pastry and meat-pastry, if stored at non refrigerated temperatures (21-23C). Rice and meat pastries are frequently consumed under conditions where no cooled storage is available e.g. picnics and outdoor events. Bacillus cereus is a ubiquitous spore former and is therefore difficult to eliminate from foods. It is therefore important to know which conditions will affect the formation of cereulide in foods. My research showed that the cereulide content was strongly (10 to 1000 fold differences in toxin content) affected by the growth environment of the bacterium. Storage of foods under nitrogen atmosphere (> 99.5 %) prevented the production of cereulide. But when also carbon dioxide was present, minimizing the oxygen contant (< 1%) did not protect the food from formation of cereulide in preliminary experiments. Also food supplements affected cereulide production at least in the laboratory. Adding free amino acids, leucine and valine, stimulated cereulide production 10 to 20 fold. In peptide bonded form these amino acids are natural constituents in all proteins. Interestingly, adding peptide bonded leucine and valine had no significant effect on cereulide production. Free amino acids leucine and valine are approved food supplements and widely used as flawour modifiers in food technology. My research showed that these food supplements may increase food poisoning risk even though they are not toxic themselves.
Resumo:
Megasphaera cerevisiae, Pectinatus cerevisiiphilus, Pectinatus frisingensis, Selenomonas lacticifex, Zymophilus paucivorans and Zymophilus raffinosivorans are strictly anaerobic Gram-stain-negative bacteria that are able to spoil beer by producing off-flavours and turbidity. They have only been isolated from the beer production chain. The species are phylogenetically affiliated to the Sporomusa sub-branch in the class "Clostridia". Routine cultivation methods for detection of strictly anaerobic bacteria in breweries are time-consuming and do not allow species identification. The main aim of this study was to utilise DNA-based techniques in order to improve detection and identification of the Sporomusa sub-branch beer-spoilage bacteria and to increase understanding of their biodiversity, evolution and natural sources. Practical PCR-based assays were developed for monitoring of M. cerevisiae, Pectinatus species and the group of Sporomusa sub-branch beer spoilers throughout the beer production process. The developed assays reliably differentiated the target bacteria from other brewery-related microbes. The contaminant detection in process samples (10 1,000 cfu/ml) could be accomplished in 2 8 h. Low levels of viable cells in finished beer (≤10 cfu/100 ml) were usually detected after 1 3 d culture enrichment. Time saving compared to cultivation methods was up to 6 d. Based on a polyphasic approach, this study revealed the existence of three new anaerobic spoilage species in the beer production chain, i.e. Megasphaera paucivorans, Megasphaera sueciensis and Pectinatus haikarae. The description of these species enabled establishment of phenotypic and DNA-based methods for their detection and identification. The 16S rRNA gene based phylogenetic analysis of the Sporomusa sub-branch showed that the genus Selenomonas originates from several ancestors and will require reclassification. Moreover, Z. paucivorans and Z. raffinosivorans were found to be in fact members of the genus Propionispira. This relationship implies that they were carried to breweries along with plant material. The brewery-related Megasphaera species formed a distinct sub-group that did not include any sequences from other sources, suggesting that M. cerevisiae, M. paucivorans and M. sueciensis may be uniquely adapted to the brewery ecosystem. M. cerevisiae was also shown to exhibit remarkable resistance against many brewery-related stress conditions. This may partly explain why it is a brewery contaminant. This study showed that DNA-based techniques provide useful tools for obtaining more rapid and specific information about the presence and identity of the strictly anaerobic spoilage bacteria in the beer production chain than is possible using cultivation methods. This should ensure financial benefits to the industry and better product quality to customers. In addition, DNA-based analyses provided new insight into the biodiversity as well as natural sources and relations of the Sporomusa sub-branch bacteria. The data can be exploited for taxonomic classification of these bacteria and for surveillance and control of contaminations.
Resumo:
Suurin osa luonnossa havaitsemistamme mikrobeista on sellaisia, joita emme edelleenkään osaa kasvattaa laboratorio-oloissa, vaikka tietomme mikrobien monimuotoisuudesta paranevat koko ajan. Luonnontilaisen mikrobieliöstön kokoonpano eri ympäristöissä on paljolti epäselvä ja ymmärrämme vielä hyvin puutteellisesti mikrobien ekologiaa ja niiden rooleja eliöyhteisöissä. Nykyaikaiset molekulaariset tutkimusmenetelmät auttavat selvittämään mikrobien monimuotoisuutta kokonaisvaltaisesti ja nopeasti. Ympäristöstä kemiallisesti puhdistetut ribosomaalista RNA:ta koodaavat geenit edustavat periaatteessa kaikkia eliöyhteisön geneettisesti toisistaan poikkeavia eliöitä. Niistä voidaan valikoida halutut genomit jatkotutkimuksia varten. Uusien menetelmien käyttö on tuonut esiin sen merkittävän seikan, että "tavanomaisten" elinympäristöjen eliöyhteisöihin kuuluu suuri joukko entuudestaan tuntemattomia arkkieliöitä. Aiemmin kuviteltiin, että arkkieliöt asuttavat vain sellaisia "epätavallisia" tai "äärimmäisiä" elinympäristöjä, joita luonnehtii joku seuraavista ominaisuuksista: hyvin korkea lämpötila, korkea suolapitoisuus, korkea happamuus tai emäksisyys, hapettomuus. Tutkijat ovat viimeisen noin kymmenen vuoden aikana osoittaneet, että arkkieliöt asuttavat hyvin monenlaisia kylmän ja lauhkean vyöhykkeen ympäristöjä, yhtä hyvin maaperää kuin suolaisen ja makean veden pohjaa tai pintakerroksia. Nämä löydöt ovat avanneet uuden alun arkkieliöiden tutkimukselle, erityisesti sen selvittämiselle, mitkä ovat niiden fysiologiset ja ekologiset roolit monimuotoisissa mikrobiyhteisöissä. Tämä väitöskirja kuvaa entuudestaan tuntemattomien arkkieliöiden löytymistä havumetsävyöhykkeen metsämaasta. Arkkieliöitä löytyi myös lauhkean vyöhykkeen vuorovesialueelta, murtoveden huuhtelemasta pohjasta. Nämä löydöt ovat perustavalaatuisia vuorovesialueen eliöyhteisöjen ymmärtämiseksi. Suomalaisen metsäjärven vedestä määritettiin molempien arkkieliöiden pääryhmien - tieteellisiltä nimiltään Crenarchaeota ja Euryarchaeota - edustajia. Euryarchaeota-ryhmän edustajia voitiin havainnoida myös fluoresenssi-mikroskopoinnilla. Löydöt viittaavat siihen, että arkkieliöillä on oma biogeokemiallinen roolinsa makeanveden ravintoketjujen hiilen käytössä. Tässä työssä määritetyt uudet arkkieliöiden genomien nukleotidisekvenssit on toimitettu ARB-tietokantaan, jonka kasvava vertailuaineisto edelleen parantaa uusien arkkieliösekvenssien analyysiä ja auttaa hybridisaatiokoetinten ja polymeraasiketjureaktioalukkeiden suunnittelussa ja arvioinnissa. Tässä väitöskirjassa esitellyt tulokset yhdessä lukuisien vesi-, maaperä- ja muiden ympäristöjen arkkieliöitä käsittelevien julkaisujen kanssa osoittavat, että arkkieliöt asuttavat monia erilaisia elinympäristöjä ja että ne ovat ekologisesti paljon menestyneempiä, kuin tieteenalalla on kuviteltu. Voimme olettaa, että heti kun joitain näistä eliöistä onnistutaan kasvattamaan ja ylläpitämään laboratorio-oloissa, niiden joukosta löydetään aivan uusia, entuudestaan tuntemattomia fysiologisia fenotyyppejä, jotka avaavat mielenkiintoisia näkymiä aineenvaihdunnan ja perinnöllisten ominaisuuksien tutkimukselle.
Resumo:
D-vitamiini ylläpitää normaalia luun kasvua ja uudistumista koko elämän ajan. Suomessa, kuten monissa muissakin länsimaissa, väestön D-vitamiinitilanne on riittämätön – talvisin osalla jopa puutteellinen. Tässä väitöskirjassa on tutkittu, lisääkö D-vitamiini luumassan kertymistä kasvuiässä, ja ylläpitäkö D-vitamiini luuston tasapainoista aineenvaihduntaa aikuisiällä. Nämä vaikutukset saattavat ehkäisi osteoporoosin kehittymistä eri ikäkausina. Väitöskirjatyössä tutkittiin erisuuruisten D-vitamiinilisäysten vaikutuksia kolmessa eri ikäryhmässä, jotka olivat 11-12 -vuotiaat tytöt (N=228), 21-49 -vuotiaat miehet (N=54) ja 65-85 -vuotiaat naiset (N=52). Tutkittavat satunnaistettiin ryhmiin, jotka nauttivat joko lumevalmistetta tai 5-20 µg D3-vitamiinia vitamiinilisänä. Tutkimukset olivat kaksoissokkoutettuja. Tutkimuksen aikana tutkittavilta otettiin paastoveri- ja virtsanäytteitä. Lisäksi he täyttivät tutkimuslomakkeen taustatietojen kartoittamiseksi sekä frekvenssikyselylomakkeen kalsiumin ja D-vitamiinin saannin selvittämiseksi. Tyttöjen luunmineraalitiheys (BMD) mitattiin DXA–laitteella ja miesten volumetrinen luuntiheys pQCT-menetelmällä. Näytteistä määritettiin mm. seerumin 25-hydroksi-D-vitamiinin (=S-25-OHD), lisäkilpirauhashormonin (=S-PTH) ja luun aineenvaihduntaa kuvaavien merkkiaineiden pitoisuuksia. Murrosikäisten tyttöjen poikkileikkaustutkimuksessa S-25-OHD- ja luun muodostusmerkkiaineen pitoisuudet vaihtelivat kuukausien välillä; suurimmat pitoisuudet mitattiin syyskuussa ja pienimmät maaliskuussa, mikä kuvastaa vuodenaikaisvaihtelua. Vastaava vaihtelu havaittiin lannerangan ja reisiluun BMD:ssä. D-vitamiinilisäyksellä oli myönteinen vaikutus tyttöjen luumassan lisääntymiseen. Suurin D-vitamiinilisä (10 µg/vrk) lisäsi luumassaa 17.2% enemmän reisiluussa ja 12.5% enemmän lannerangassa verrattuna lumevalmistetta nauttivien tyttöjen vastaaviin tuloksiin, mutta tulos riippui hoitomyöntyvyydestä. D-vitamiinin vaikutus luustoon välittyi vähentyneen luun hajotuksen kautta. Tutkimustuloksiin perustuen riittävä D-vitamiinin saanti murrosikäisille tytöille on 15 µg/vrk. D-vitamiinilisän vaikutus 65-85 -vuotiaiden naisten S-25-OHD-pitoisuuteen vakioitui kuudessa viikossa annoksen ollessa 5-20 µg/vrk. Näillä D-vitamiiniannoksilla ei saavutettu tavoiteltavaa S-25-OHD-pitoisuutta, joka on 80 nmol/l. Arvioimme, että 60 nmol/l -pitoisuuden, jota esiintyy kesäisin tämän ikäryhmän suomalaisilla, tämän ikäryhmän naiset saavuttaisivat 24 µg:n päivittäisellä D-vitamiinin saannilla. Terveillä miehillä havaittiin vuodenaikaisvaihtelu S-25-OHD- ja S-PTH-pitoisuudessa sekä luun hajotusta kuvaavassa merkkiainepitoisuudessa. Toisaalta vaihtelua ei havaittu radiuksen volumetrisessä luuntiheydessä eikä luun muodostusmerkkiaineen pitoisuudessa. Vuodenaikaisvaihtelu estettiin 17 µg:n päivittäisellä D-vitamiinin saannilla, mutta tämän ei havaittu vaikuttavan radiuksen luuntiheyteen kuusi kuukautta kestävän tutkimuksen aikana. Yhteenvetona todetaan, että D-vitamiinin saanti on edelleenkin riittämätöntä tutkimusten kohderyhmillä. Tämä näkyy S-25-OHD- ja PTH-pitoisuuden sekä luunaineenvaihduntaa kuvaavien merkkiaineiden vuodenaikaisvaihteluna, mikä on haitallista luuston hyvinvoinnille. D-vitamiinin saantia tulisi lisätä, jotta vähintäänkin riittävä D-vitamiinitilanne (S-25-OHD>50 nmol/l) tai mahdollisesti jopa tavoiteltava D-vitaminitilanne (S-25-OHD≥80 nmol/l) saavutettaisiin. Jotta D-vitamiinin saannin lisääminen olisi kaikissa ikäryhmissä mahdollista, on suunniteltava nykyistä enemmän D-vitamiinilla täydennettyjä elintarvikkeita.
Resumo:
Arabinoxylo-oligosaccharides (AXOS) can be prepared enzymatically from arabinoxylans (AX) and AXOS are known to possess prebiotic potential. Here the structural features of 10 cereal AX were examined. AX were hydrolysed by Shearzyme® to prepare AXOS, and their structures were fully analysed. The prebiotic potential of the purified AXOS was studied in the fermentation experiments with bifidobacteria and faecal microbiota. In AX extracted from flours and bran, high amounts of a-L-Araf units are attached to the b-D-Xylp main chain, whereas moderate or low degree of substitution was found from husks, cob and straw. Nuclear magnetic resonance (NMR) spectroscopy showed that flour and bran AX contain high amounts of a-L-Araf units bound to the O-3 of b-D-Xylp residues and doubly substituted b-D-Xylp units with a-L-Araf substituents at O-2 and O-3. Barley husk and corn cob AX contain high amounts of b-D-Xylp(1→2)-a-L-Araf(1→3) side chains, which can also be found in AX from oat spelts and rice husks, and in lesser amounts in wheat straw AX. Rye and wheat flour AX and oat spelt AX were hydrolysed by Shearzyme® (with Aspergillus aculeatus GH10 endo-1,4-b-D-xylanase as the main enzyme) for the production of AXOS on a milligram scale. The AXOS were purified and their structures fully analysed, using mass spectrometry (MS) and 1D and 2D NMR spectroscopy. Monosubstituted xylobiose and xylotriose with a-L-Araf attached to the O-3 or O-2 of the nonreducing end b-D-Xylp unit and disubstituted AXOS with two a-L-Araf units at the nonreducing end b-D-Xylp unit of xylobiose or xylotriose were produced. Xylobiose with b-D-Xylp(1→2)-a-L-Araf(1→3) side chain was also purified. These AXOS were used as standards in further identification and quantification of corresponding AXOS from the hydrolysates in high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis. The prebiotic potential of AXOS was tested in in vitro fermentation experiments. Bifidobacterium adolescentis ATCC 15703 and B. longum ATCC 15707 utilized AXOS from the AX hydrolysates. Both species released L-arabinose from AXOS, but B. adolescentis consumed the XOS formed, whereas B. longum fermented the L-arabinose released. The third species tested, B. breve ATCC 15700, grew poorly on these substrates. When cultivated on pure AXOS, the bifidobacterial mixture utilized pure singly substituted AXOS almost completely, but no growth was detected with pure doubly substituted AXOS as substrates. However, doubly substituted AXOS were utilized from the mixture of xylose, XOS and AXOS. Faecal microbiota utilized both pure singly and doubly substituted AXOS. Thus, a mixture of singly and doubly substituted AXOS could function as a suitable, slowly fermenting prebiotic substance. This thesis contributes to the structural information on cereal AX and preparation of mono and doubly substituted AXOS from AX. Understanding the utilization strategies is fundamental in evaluating the prebiotic potential of AXOS. Further research is still required before AXOS can be used in applications for human consumption.
Resumo:
The present study focuses on the translational strategies of Cocksfoot mottle virus (CfMV, genus Sobemovirus), which infects monocotyledonous plants. CfMV RNA lacks the 5'cap and the 3'poly(A) tail that ensure efficient translation of cellular messenger RNAs (mRNAs). Instead, CfMV RNA is covalently linked to a viral protein VPg (viral protein, genome-linked). This indicates that the viral untranslated regions (UTRs) must functionally compensate for the lack of the cap and poly(A) tail. We examined the efficacy of translation initiation in CfMV by comparing it to well-studied viral translational enhancers. Although insertion of the CfMV 5'UTR (CfMVe) into plant expression vectors improved gene expression in barley more than the other translational enhancers examined, studies at the RNA level showed that CfMVe alone or in combination with the CfMV 3'UTR did not provide the RNAs translational advantage. Mutation analysis revealed that translation initiation from CfMVe involved scanning. Interestingly, CfMVe also promoted translation initiation from an intercistronic position of dicistronic mRNAs in vitro. Furthermore, internal initiation occurred with similar efficacy in translation lysates that had reduced concentrations of eukaryotic initiation factor (eIF) 4E, suggesting that initiation was independent of the eIF4E. In contrast, reduced translation in the eIF4G-depleted lysates indicated that translation from internally positioned CfMVe was eIF4G-dependent. After successful translation initiation, leaky scanning brings the ribosomes to the second open reading frame (ORF). The CfMV polyprotein is produced from this and the following overlapping ORF via programmed -1 ribosomal frameshift (-1 PRF). Two signals in the mRNA at the beginning of the overlap program approximately every fifth ribosome to slip one nucleotide backwards and continue translation in the new -1 frame. This leads to the production of C-terminally extended polyprotein, which encodes the viral RNA-dependent RNA polymerase (RdRp). The -1 PRF event in CfMV was very efficient, even though it was programmed by a simple stem-loop structure instead of a pseudoknot, which is usually required for high -1 PRF frequencies. Interestingly, regions surrounding the -1 PRF signals improved the -1 PRF frequencies. Viral protein P27 inhibited the -1 PRF event in vivo, putatively by binding to the -1 PRF site. This suggested that P27 could regulate the occurrence of -1 PRF. Initiation of viral replication requires that viral proteins are released from the polyprotein. This is catalyzed by viral serine protease, which is also encoded from the polyprotein. N-terminal amino acid sequencing of CfMV VPg revealed that the junction of the protease and VPg was cleaved between glutamate (E) and asparagine (N) residues. This suggested that the processing sites used in CfMV differ from the glutamate and serine (S) or threonine (T) sites utilized in other sobemoviruses. However, further analysis revealed that the E/S and E/T sites may be used to cleave out some of the CfMV proteins.
Resumo:
Syanobakteerit (sinilevät) ovat olleet Itämeressä koko nykymuotoisen Itämeren ajan, sillä paleolimnologiset todisteet niiden olemassaolosta Itämeren alueella ovat noin 7000 vuoden takaa. Syanobakteerien massaesiintymät eli kukinnat ovat kuitenkin sekä levinneet laajemmille alueille että tulleet voimakkaimmiksi viimeisten vuosikymmenien aikana. Tähän on osasyynä ihmisten aiheuttama kuormitus, joka rehevöittää Itämerta. Suomenlahti, jota tämä tutkimus käsittelee, on kärsinyt tästä rehevöitymiskehityksestä muita Itämeren altaita enemmän. Syanobakteerit muodostavat jokakesäisiä kukintoja Suomenlahdella - niin sen avomerialueilla kuin rannoillakin. Yleisimmät kukintoja muodostavat syanobakteerisuvut ovat Nodularia, Anabaena ja Aphanizomenon. Kukinnat aiheuttavat paitsi esteettistä haittaa myös terveydellisen riskitekijän. Niiden myrkyllisyys liitetään usein Nodularia-suvun tuottamaan nodulariini-maksamyrkkyyn. Itämeren Aphanizomenon-suvun on todettu olevan myrkytön. Vaikka Itämeren kukintoja aiheuttavista Nodularia- ja Aphanizomenon-syanobakteereista tiedetään varsin paljon, on molekyylimenetelmiin pohjautuva syanobakteeritutkimus ohittanut Itämeren Anabaena-suvun monelta osin. Tämän työn tarkoituksena oli syventää käsitystämme Itämeren Anabaena-syanobakteerista, sen mahdollisesta myrkyllisyydestä, geneettisestä monimuotoisuudesta ja fylogeneettisista sukulaisuussuhteista. Tässä työssä eristettiin 49 planktista Anabaena-kantaa, joista viisi tuottivat mikrokystiinejä. Tämä oli ensimmäinen yksiselitteinen todiste, että Itämeren Anabaena tuottaa maksamyrkyllisiä mikrokystiini-yhdisteitä. Jokainen eristetty myrkyllinen Anabaena-kanta tuotti useita mikrokystiini-variantteja. Lisäksi mikrokystiinejä löydettiin kukintanäytteistä, joissa oli myrkkyä syntetisoivia geenejä sisältäneitä Anabaena-syanobakteereita. Myrkkyjä löydettiin molempina tutkimusvuosina 2003 ja 2004. Myrkkyjen esiintyminen ei siten ollut vain yksittäinen ilmiö. Tässä työssä saimme viitteitä siitä, että maksamyrkyllinen Anabaena-syanobakteeri esiintyisi vähäsuolaisissa vesissä. Tämä riippuvuussuhde jää kuitenkin tulevien tutkimuksien selvitettäväksi. Tässä työssä havaittiin mikrokystiinisyntetaasi-geenien inaktivoituminen Itämeren Anabaena-kannassa ja kukintanäytteissä. Kuvasimme Anabaena-kannan mikrokystiinisyntetaasigeenien sisältä insertioita, jotka hyvin todennäköisesti inaktivoivat myrkyntuoton. Insertion sisältäneeltä kannalta löysimme kuitenkin kaikki mikrokystiinisyntetaasigeenit osoittaen, että geenien olemassaolo ei välttämättä varmista kannan mikrokystiinintuottoa. Mielenkiintoista oli se, että inaktivaation aiheuttavia insertioita löytyi kukintanäytteistä molemmilta tutkimusvuosilta. Vastaavia insertioita ei kuitenkaan löydetty makean veden Anabaena-kannoista tai järvinäytteistä. On yleistä, että syanobakteerikukinnoista löytyy usean syanobakteerisuvun edustajia. Myrkyllisiä sukuja tai lajeja ei voida kuitenkaan erottaa mikroskooppisesti myrkyttömistä. Käsillä olevassa tutkimuksessa kehitettiin molekyylimenetelmä, jolla on mahdollista määrittää kukinnan mahdollisesti maksamyrkylliset syanobakteerisuvut. Tätä menetelmää sovellettiin Itämeren kukintojen tutkimiseen. Itämeren pintavesistä ja ranta-alueiden pohjasta eristetyt Anabaena-kannat osoittautuivat geneettisesti monimuotoisiksi. Tämä Anabaena-syanobakteerien geneettinen monimuotoisuus vahvistettiin monistamalla geenejä suoraan kukintanäytteistä ilman kantojen eristystä. Makeiden vesien ja Itämeren Anabaena-kannat ovat geneettisesti hyvin samankaltaisia. Geneettisissä vertailuissa kävi kuitenkin ilmi, että pohjassa elävien Anabaena-kantojen geneettinen monimuotoisuus oli suurempaa kuin pintavesistä eristettyjen kantojen. Itämeren Anabaena-kantojen sekvenssit muodostivat omia ryhmiä sukupuun sisällä, jolloin on mahdollista, että nämä edustavat Itämeren omia Anabaena-ekotyyppejä. Tämä tutkimus oli ensimmäinen, jossa uusin molekyylimenetelmin systemaattisesti selvitettiin Itämeren Anabaena-syanobakteerin geneettistä populaatiorakennetta, fylogeniaa ja myrkyntuottoa. Tulevaisuudessa monitorointitutkimuksissa on otettava huomioon myös Itämeren Anabaena-syanobakteerin mahdollinen maksamyrkyntuotto – erityisesti vähäsuolaisemmilla rannikkovesillä.
Resumo:
Currently, the classification used for cyanobacteria is based mainly on morphology. In many cases the classification is known to be incongruent with the phylogeny of cyanobacteria. The evaluation of this classification is complicated by the fact that numerous strains are only described morphologically and have not been isolated. Moreover, the phenotype of many cyanobacterial strains alters during prolonged laboratory cultivation. In this thesis, cyanobacterial strains were isolated from lakes (mainly Lake Tuusulanjärvi) and both morphology and phylogeny of the isolates were investigated. The cyanobacterial community composition in Lake Tuusulanjärvi was followed for two years in order to relate the success of cyanobacterial phenotypes and genotypes to environmental conditions. In addition, molecular biological methods were compared with traditional microscopic enumeration and their ability and usefulness in describing the cyanobacterial diversity was evaluated. The Anabaena, Aphanizomenon, and Trichormus strains were genetically heterogeneous and polyphyletic. The phylogenetic relationships of the heterocytous cyanobacteria were not congruent with their classification. In contrast to heterocytous cyanobacteria, the phylogenetic relationships of the Snowella and Woronichinia strains, which had not been studied before this thesis, reflected the morphology of strains and followed their current classification. The Snowella strains formed a monophyletic cluster, which was most closely related to the Woronichinia strain. In addition, a new cluster of thin, filamentous cyanobacterial strains identified as Limnothrix redekei was revealed. This cluster was not closely related to any other known cyanobacteria. The cyanobacterial community composition in Lake Tuusulanjärvi was studied with molecular methods [denaturant gradient gel electrophoresis (DGGE) and cloning of the 16S rRNA gene], through enumerations of cyanobacteria under microscope, and by strain isolations. Microcystis, Anabaena/Aphanizomenon, and Synechococcus were the major groups in the cyanobacterial community in Lake Tuusulanjärvi during the two-year monitoring period. These groups showed seasonal succession, and their success was related to different environmental conditions. The major groups of the cyanobacterial community were detected by all used methods. However, cloning gave higher estimates than microscopy for the proportions of heterocytous cyanobacteria and Synechococcus. The differences were probably caused by the high 16S rRNA gene copy numbers in heterotrophic cyanobacteria and by problems in the identification and detection of unicellular cyanobacteria.
Resumo:
Rural income diversification has been found to be rather the norm than the exception in developing countries. Smallholder households tend to diversify their income sources because of the need to manage risks, secure a smooth flow of income, allocate surplus labour, respond to various kinds of market failures, and apply coping strategies. The Agricultural Household Model provides a theoretical rationale for income diversification in that rural households aim at maximising their utility. There are several elements involved, such as agricultural production for their own consumption and markets, leisure activities and income from non-farm sources. The aim of the present study is to enhance understanding of the processes of rural income generation and diversification in eastern Zambia. Specifically, it explores the relationship between household characteristics, asset endowments and income-generation patterns. According to the sustainable- rural-livelihoods framework, the assets a household possesses shape its capacity to seize new economic opportunities. The study is based on two surveys conducted among rural smallholder households in four districts of Eastern Province in Zambia in 1985/86 and 2003. Sixty-seven of the interviewed households were present in both surveys and this panel allows comparison between the two points of time. The initial descriptive analysis is complemented with an econometric analysis of the relationships between household assets and income sources. The results show that, on average, 30 per cent of the households income originated from sources outside their own agriculture. There was a slight increase in the proportion of non-farm income from 1985/86 to 2003, but total income clearly declined mainly on account of diminishing crop income. The land area the household was able to cultivate, which is often dependent on the available labour, was the most significant factor affecting both the household-income level and the diversification patterns. Diversification was, in most cases, a coping strategy rather than a voluntary choice. Measured as income/capita/day, all households were below the poverty line in 2003. The agricultural reforms in Zambia, combined with other trends such as changes in rainfall pattern, the worsening livestock situation and the incidence of human disease, had a negative impact on agricultural productivity and income between 1985/86 and 2003. Sources of non-farm income were closely linked to agriculture either upstream or downstream and the income they generated was not enough to compensate for the decline of agricultural income. Household assets and characteristics had a smaller impact on diversification patterns than expected, which could reflect the lack of opportunities in the remote rural environment.