24 resultados para species-level trends


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The genus Actinomyces consists of a heterogeneous group of gram-positive, mainly facultatively anaerobic or microaerobic rods showing various degrees of branching. In the oral cavity, streptococci and Actinomyces form a fundamental component of the indigenous microbiota, being among initial colonizers in polymicrobial biofilms. The significance of the genus Actinomyces is based on the capability of species to adhere to surfaces such as on teeth and to co-aggregate with other bacteria. Identification of Actinomyces species has mainly been based on only a few biochemical characteristics, such as pigmentation and catalase production, or on the use of a single commercial kit. The limited identification of oral Actinomyces isolates to species level has hampered knowledge of their role both in health and disease. In recent years, Actinomyces and related organisms have attracted the attention of clinical microbiologists because of a growing awareness of their presence in clinical specimens and their association with disease. This series of studies aimed to amplify the identification methods for Actinomyces species. With the newly developed identification scheme, the age-related occurrence of Actinomyces in healthy mouths of infants and their distribution in failed dental implants was investigated. Adhesion of Actinomyces species to titanium surfaces processed in various ways was studied in vitro. The results of phenotypic identification methods indicated a relatively low applicability of commercially available test kits for reliable identification within the genus Actinomyces. However, in the study of conventional phenotypic methods, it was possible to develop an identification scheme that resulted in accurate differentiation of Actinomyces and closely related species, using various different test methods. Genotypic methods based on 16S rRNA sequence analysis of Actinomyces proved to be a useful method for genus level identification and further clarified the species level identification with phenotypic methods. The results of the study of infants showed that the isolation frequency of salivary Actinomyces species increased according to age: thirty-one percent of the infants at 2 months but 97% at 2 years of age were positive for Actinomyces. A. odontolyticus was the most prominent Actinomyces colonizer during the study period followed in frequency by A. naeslundii and A. viscosus. In the study of explanted dental implants, Actinomyces was the most prevalent bacterial genus, colonizing 94% of the fixtures. Also in the implants A. odontolyticus was revealed as the most common Actinomyces species. It was present in 84% of Actinomyces -positive fixtures followed in frequency by A. naeslundii, A. viscosus and A. israelii. In an in vitro study of titanium surfaces, different Actinomyces species showed variation regarding their adhesion to titanium. Surface roughness as well as albumin coating of titanium had significant effects on adhesion. The use of improved phenotypic and molecular diagnostic methods increased the accuracy of the identification of the Actinomyces to species level. This facilitated an investigation of their occurrence and distribution in oral specimens in both health and disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation is focused on the taxonomy, phylogeny, and ecology of the vagrant, erratic and allied terricolous and saxicolous species of the genera Aspicilia A. Massal. and Circinaria Link (Megasporaceae), particularly those traditionally referred to as manna lichens . The group has previously been defined on the basis of few morphological characters. The phylogeny of the family Megasporaceae is inferred from the combined dataset of nuLSU and mtSSU sequences. Five genera Aspicilia, Circinaria, Lobothallia, Megaspora, and Sagedia are recognized. Lobothallia is sister of the four other genera, while Aspicilia and Sagedia form the next clade. All these genera have small asci with eight spores. Circinaria is a sister genus of Megaspora, and these two have in common asci with (1 4) 6 8 large spores. Circinaria forms a monophyletic group and sphaerothallioid species form a monophyletic group within Circinaria. The presence of certain morphological characters such as pseudocyphellae, thickness of cortex and medulla layers, as well as ecological differences in sphaerothallioid species distinguish it from some other crustose species, especially those containing aspicilin and characterised by thin cortex and medulla layers, conidium length c. 6 12 µm and absence of pseudocyphellae. If sphaerothallioid species are accepted as a distinct genus, the rest of the Circinaria species would remain as a paraphyletic assemblage. Currently, the genus Circinaria includes all the sphaerothallioid species and its generic position is confirmed and accepted. Thus, it is proposed as a correct generic name also for the manna lichens described originally in other genera. Phylogeny at the species level was studied using nrITS sequence data. Traditionally, morphological characters have been used for the recognition of species. They were re-evaluated in the light of molecular data. Since characters such as vagrant, erratic and crustose growth forms proved to be misleading for the recognition of some species, a combination of several characters (including molecular data) is recommended. Vagrant growth form seems to have evolved several times among the distantly related lineages and even within a single population. The reasons behind the high plasticity in the external morphology of the sphaerothallioid Circinaria remain, however, unknown. Six new species are recognized: Aspicilia tibetica, Circinaria arida, C. digitata nom provis., C. gyrosa nom. provis., C. rogeri nom. provis., and C. rostamii nom. provis. Based on an analysis of nrITS dataset, three new erratic, vagrant and crustose species were also recognized, but these require additional study. The results also reveal that C. elmorei and C. hispida are not monophyletic as currently understood. In addition, 13 new combinations in the genus Circinaria are proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural selection generally operates at the level of the individual, or more specifically at the level of the gene. As a result, individual selection does not always favour traits which benefit the population or species as a whole. The spread of an individual gene may even act to the detriment of the organism in which it finds. Thus selection at the level of the individual can affect processes at the level of the organism, group or even at the level of the species. As most behaviours ultimately affect births, deaths and the distribution of individuals, it seems inevitable that behavioural decisions will have an impact on population dynamics and population densities. Behavioural decisions can often involve costs through allocation of energy into behavioural strategies, such as the investment into armaments involved in fighting over resources or increased mortality due to injury or increased predation risk. Similarly, behaviour may act o to benefit the population, in terms of higher survival and increased fecundity. Examples include increased investment through parental care, choosing a mate based on the nuptial gifts they may supply and choosing territories in the face of competition. Investigating the impact of behaviour on population ecology may seem like a trivial task, but it is likely to have important consequences at different levels. For example, antagonistic behaviour may occasionally become so extreme that it increases the risk of extinction, and such extinction risk may have important implications for conservation. As a corollary, any such behaviour may also act as a macroevolutionary force, weeding out populations with traits which, whilst beneficial to the individuals in the short term, ultimately result in population extinction. In this thesis, I examine how behaviours, specifically conflict and competition over a resource and aspects of behaviour involved in sexual selection, can affect population densities, and what the implications are for the evolution and ecology of the populations in question. It is found that both behaviours related to individual conflict and mating strategies can have an effect at the level of the population, but that various factors, such as a feedback between selection and population densities or macroevolution caused by species extinctions, may act to limit the intensity of conflicts that we observe in nature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cortinarius is the largest genus of Agaricales with a worldwide distribution. So far, over 4000 Cortinarius names and combinations have been published. Cortinarius spp. form ectomycorrhizae with different trees and shrubs. A majority of the Cortinarius species have narrow ecological preferences and many form ectomycorrhiza with only one or few host species. The subgenus Telamonia sensu lato (s. lat.), comprising the greatest number of species, is the most poorly known of the subgenera of Cortinarius. The centre of diversity is in the northern hemisphere, although some species of the group are also recognized in the southern hemisphere. The aim of this thesis was to study the taxonomy of Cortinarius subgenus Telamonia p.p. species based on morphological and molecular data, as well as to study the ecology and distribution of the species in North Europe. The taxonomical problems encountered and the difficulty in finding and studying all the relevant names and types slowed down the study. The diversity of the subgenus Telamonia s. lat. in North Europe (excluding sect. Hydrocybe, Icrustati and Anomali) was found to be far greater than previously thought. Even many of the common species have not yet been described. So far, ca. 200 species have been recognised from the Nordic countries, but the sampling in most groups does not cover the whole diversity and especially the southern deciduous forest species are underrepresented in our study. In most cases phylogenetic (only based on ITS data) and morphological species recognition were in concordance, but in a few cases morphologically delimited species had almost identical ITS sequences, raising the question as to whether ITS is always variable enough for species recognition. The opposite situation, in which a morphologically uniform species included two phylogenetically distinct lineages, however, was also encountered, suggesting the possibility of cryptic species in Cortinarius. In our studies no taxa below species level were recognised and the aforementioned results indicate that presumably they can only be recognised genetically. Based on our preliminary results a revision of the infrageneric classification in Cortinarius subgenus Telamonia s. lat. is needed, and more sections should be established for a meaningful and functional classification. Many groups have turned out to be artificial, and it seems evident that many characteristics have been over- or underemphasised. Many morphological characteristics, however, are useful in the identification of telamonioid species and e.g. some spore characteristics have often been overlooked. Our studies have concentrated on North Europe, but we have found some similarities with North European and North American taxa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The traditional aim of community ecology has been to understand the origin and maintenance of species richness in local communities. Why certain species occur in one place but not in another, how ecologically apparently similar species use resources, what is the role of the regional species pool in affecting species composition in local communities, and so forth. Madagascar offers great opportunities to conduct such studies, since it is a very large island that has been isolated for tens of million of years. Madagascar has remarkable faunal and floral diversity and species level endemism reaches 100% in many groups of species. Madagascar is also exceptional for endemism at high taxonomic levels and for the skewed representation of many taxa in comparison with continental faunas. For example, native ungulates that are dominant large herbivorous mammals on the African continent are completely lacking in Madagascar. The largest native Malagasy herbivores, and the main dung producers for Malagasy dung beetles, are the endemic primates, lemurs. Cattle was introduced to Madagascar about 1,000 yrs ago and is today abundant and widespread. I have studied Malagasy dung beetle communities and the distributional patterns of species at several spatial scales and compared the results with comparable communities in other tropical areas. There are substantial differences in dung beetle communities in Madagascar and elsewhere in the tropics in terms of the life histories of the species, species ecological traits, local and regional species diversities, and the sizes of species geographical ranges. These differences are attributed to Madagascar s ancient isolation, large size, heterogeneous environment, skewed representation of the mammalian fauna, and recent though currently great human impact.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composting refers to aerobic degradation of organic material and is one of the main waste treatment methods used in Finland for treating separated organic waste. The composting process allows converting organic waste to a humus-like end product which can be used to increase the organic matter in agricultural soils, in gardening, or in landscaping. Microbes play a key role as degraders during the composting-process, and the microbiology of composting has been studied for decades, but there are still open questions regarding the microbiota in industrial composting processes. It is known that with the traditional, culturing-based methods only a small fraction, below 1%, of the species in a sample is normally detected. In recent years an immense diversity of bacteria, fungi and archaea has been found to occupy many different environments. Therefore the methods of characterising microbes constantly need to be developed further. In this thesis the presence of fungi and bacteria in full-scale and pilot-scale composting processes was characterised with cloning and sequencing. Several clone libraries were constructed and altogether nearly 6000 clones were sequenced. The microbial communities detected in this study were found to differ from the compost microbes observed in previous research with cultivation based methods or with molecular methods from processes of smaller scale, although there were similarities as well. The bacterial diversity was high. Based on the non-parametric coverage estimations, the number of bacterial operational taxonomic units (OTU) in certain stages of composting was over 500. Sequences similar to Lactobacillus and Acetobacteria were frequently detected in the early stages of drum composting. In tunnel stages of composting the bacterial community comprised of Bacillus, Thermoactinomyces, Actinobacteria and Lactobacillus. The fungal diversity was found to be high and phylotypes similar to yeasts were abundantly found in the full-scale drum and tunnel processes. In addition to phylotypes similar to Candida, Pichia and Geotrichum moulds from genus Thermomyces and Penicillium were observed in tunnel stages of composting. Zygomycetes were detected in the pilot-scale composting processes and in the compost piles. In some of the samples there were a few abundant phylotypes present in the clone libraries that masked the rare ones. The rare phylotypes were of interest and a method for collecting them from clone libraries for sequencing was developed. With negative selection of the abundant phylotyps the rare ones were picked from the clone libraries. Thus 41% of the clones in the studied clone libraries were sequenced. Since microbes play a central role in composting and in many other biotechnological processes, rapid methods for characterization of microbial diversity would be of value, both scientifically and commercially. Current methods, however, lack sensitivity and specificity and are therefore under development. Microarrays have been used in microbial ecology for a decade to study the presence or absence of certain microbes of interest in a multiplex manner. The sequence database collected in this thesis was used as basis for probe design and microarray development. The enzyme assisted detection method, ligation-detection-reaction (LDR) based microarray, was adapted for species-level detection of microbes characteristic of each stage of the composting process. With the use of a specially designed control probe it was established that a species specific probe can detect target DNA representing as little as 0.04% of total DNA in a sample. The developed microarray can be used to monitor composting processes or the hygienisation of the compost end product. A large compost microbe sequence dataset was collected and analysed in this thesis. The results provide valuable information on microbial community composition during industrial scale composting processes. The microarray method was developed based on the sequence database collected in this study. The method can be utilised in following the fate of interesting microbes during composting process in an extremely sensitive and specific manner. The platform for the microarray is universal and the method can easily be adapted for studying microbes from environments other than compost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biodegradation on different levels starting from a versatile aromatic degrader Sphingobium sp. HV3 and its megaplasmid, extending to revelation of diversity of key catabolic enzymes in the environment and finally studying birch rhizoremediation in PAH-polluted soil. To understand biodegradation of aromatics on bacterial species level, the aromatic degradation capacity of Sphingobium sp. HV3 and the role of the plasmid pSKY4, was studied. Toluene, m-xylene, biphenyl, fluorene, phenanthrene were detected as carbon and energy sources of the HV3 strain. Tn5 transposon mutagenesis linked the degradation capacity of toluene, m-xylene, biphenyl and naphthalene to the pSKY4 plasmid and qPCR expression analysis showed that plasmid extradiol dioxygenases genes (bphC and xylE) are inducted by phenanthrene, m-xylene and biphenyl whereas the 2,4-dichlorophenoxyacetic acid herbicide induced the chlorocatechol 1,2-dioxygenase gene (tfdC) from the ortho-pathway. A method to study upper meta-pathway extradiol dioxygenase gene diversity in soil was developed. The extradiol dioxygenases catalyse cleavage of the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon (meta-cleavage). A high diversity of extradiol dioxygenases were detected from polluted soils. The detected extradiol dioxygenases showed sequence similarity to known catabolic genes of Alpha-, Beta-, and Gammaproteobacteria. Five groups of extradiol dioxygenases contained sequences with no close homologues in the database, representing novel genes. In rhizoremediation experiment with birch (Betula pendula) treatment specific changes of extradiol dioxygenase communities were shown. PAH pollution changed the bulk soil extradiol dioxygenase community structure and birch rhizosphere contained a more diverse extradiol dioxygenase community than the bulk soil showing a rhizosphere effect. The degradation of pyrene in soil was enhanced with birch seedlings compared to soil without birch. The complete 280,923 kb nucleotide sequence of pSKY4 plasmid was determined. The open reading frames of pSKY4 were divided into putative conjugative transfer, aromatic degradation, replication/maintaining and transposition/integration function-encoding proteins. Aromatic degradation orfs shared high similarity to corresponding genes in pNL1, a plasmid from the deep subsurface strain Novosphingobium aromaticivorans F199. The plasmid backbones were considerably more divergent with lower similarity, which suggests that the aromatic pathway has functioned as a plasmid independent mobile genetic element. The functional diversity of microbial communities in soil is still largely unknown. Several novel clusters of extradiol dioxygenases representing catabolic bacteria, whose function, biodegradation pathways and phylogenetic position is not known were amplified with single primer pair from polluted soils. These extradiol dioxygenase communities were shown to change upon PAH pollution, which indicates that their hosts function in PAH biodegradation in soil. Although the degradation pathways of specific bacterial species are substantially better depicted than pathways in situ, the evolution of degradation pathways for the xenobiotic compounds is largely unknown. The pSKY4 plasmid contains aromatic degradation genes in putative mobile genetic element causing flexibility/instability to the pathway. The localisation of the aromatic biodegradation pathway in mobile genetic elements suggests that gene transfer and rearrangements are a competetive advantage for Sphingomonas bacteria in the environment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Jordens ekologiska system undergår för tillfället stora förändringar pga. människans aktiviteter. Ett växande antal studier visar att dessa förändringar påverkar naturliga och sexuella urvalet och därmed evolutiva processer. Målet med detta arbete var att undersöka effekterna av omgivningsförändringar på sexuella urvalet genom att använda den ökade övergödningen inom storpiggen Gasterosteus aculeatus lekområden som modell system. Sexuella urvalet är en viktig evolutiv kraft med följder på populations- och artnivå (Kapitel 1). Avhandlingens olika delar fokuserar på övergödningens effekter på upptäckandet av partners, användningen av visuella- och doftsignaler i partnersval, och fördelningen av parningsframgången mellan bobyggande hanar. I Kapitel II och III simuleras hur grumlighet orsakad av fytoplankton påverkar hastigheten med vilken potentiella partners påträffas, genom effekter på synligheten. Resultaten visar att normala algblomningar i Östersjön har en måttlig effekt på finnandet av potentiella partners. Detta tyder på att algblomningarna troligen inte kommer att minska på selektiva parningen pga. ökade sökkostnader. I Kapitel IV visas att storspiggen ändrar relativa användningen av olika signaler när vattnets grumlighet ökar; visuella signaler minskar i betydelse medan doftsignaler ökar i betydelse. Samtidigt underlättas användandet av doftsignaler av ändringar i vattnets kemiska sammansättning då fotosyntesen intensifieras (Kapitel V). Lek i övergödda vatten kan ändå vara kostsamt både på individ- och populationsnivån, då parasiterade hanar, som troligen är dåligt genetiskt anpassade till sin miljö, lyckas få mer ägg i sina bon än friskare hanar som troligen är av högre genetisk kvalitet (Kapitel VI). Övergödningen påverkar således partnersval och konkurrensen om partners genom att påverka upptäckandet av potentiella partners, evalueringen av partners och fördelningen av partners inom lekområdena. De följder detta kan ha för evolutionen av sexuellt selekterad egenskaper och för populationers dynamik och livskraft är dock oklara. Avhandlingen visar på svårigheten att förutse följderna av omgivningsförändringar för sexuella urvalet och effekterna på individ och populationsnivå.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Throughout the history of Linnean taxonomy, species have been described with varying degrees of justification. Many descriptions have been based on only a few ambiguous morphological characters. Moreover, species have been considered natural, well-defined units whereas higher taxa have been treated as disparate, non-existent creations. In the present thesis a few such cases were studied in detail. Often the species-level descriptions were based on only a few specimens and the variation previously thought to be interspecific was found to be intraspecific. In some cases morphological characters were sufficient to resolve the evolutionary relationships between the taxa, but generally more resolution was gained by the addition of molecular evidence. However, both morphological and molecular data were found to be deceptive in some cases. The DNA sequences of morphologically similar specimens were found to differ distinctly in some cases, whereas in other closely related species the morphology of specimens with identical DNA sequences differed substantially. This study counsels caution when evolutionary relationships are being studied utilizing only one source of evidence or a very limited number of characters (e.g. barcoding). Moreover, it emphasizes the importance of high quality data as well as the utilization of proper methods when making scientific inferences. Properly conducted analyses produce robust results that can be utilized in numerous interesting ways. The present thesis considered two such extensions of systematics. A novel hypothesis on the origin of bioluminescence in Elateriformia beetles is presented, tying it to the development of the clicking mechanism in the ancestors of these animals. An entirely different type of extension of systematics is the proposed high value of the white sand forests in maintaining the diversity of beetles in the Peruvian Amazon. White sand forests are under growing pressure from human activities that lead to deforestation. They were found to harbor an extremely diverse beetle fauna and many taxa were specialists living only in this unique habitat. In comparison to the predominant clay soil forests, considerably more elateroid beetles belonging to all studied taxonomic levels (species, genus, tribus, and subfamily) were collected in white sand forests. This evolutionary diversity is hypothesized to be due to a combination of factors: (1) the forest structure, which favors the fungus-plant interactions important for the elateroid beetles, (2) the old age of the forest type favoring survival of many evolutionary lineages and (3) the widespread distribution and fragmentation of the forests in the Miocene, favoring speciation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Puu-Käpylä (“Wooden Käpylä”), a neighbourhood of Helsinki, is the earliest example of the Garden City Movement in Finland. The suburb of valuable wooden architecture was built between 1920 and 1925, with the aim to provide a healthy housing area for working-class families with many children. The houses were erected by a co-operative (Käpylän kansanasunnot, “People?s Dwellings”) and they are protected by the city plan since 1960?s. However, the historical value of the sheltered courtyards has not been investigated. The aim of this study was to survey the garden flora of Puu-Käpylä and to evaluate the authenticity of the courtyard gardens. The survey covered the area of one residential quarter (1.2 ha) with twelve 2-storey semi-detached timber houses arranged around a common yard, which was originally appointed for the tenants? vegetable gardens. The houses are still rented, and each flat is allowed a small lot of the courtyard for cultivation. A complete list was made of all perennial, ornamental plant taxa present in the quarter. Spring bulbs were missed due to the timing of the survey. Generally, the plants were recorded on species level, with the exception of common lilacs, shrub roses, irises and peonies that were thoroughly studied for cultivar identification. It was assumed that plants initially grown in the courtyard could be distinguished by studying Finnish garden magazines, books and nursery catalogues published in the 1920?s and by comparing the present vegetation to surviving documents from the quarter. The total number of ornamental plant taxa identified was 172, of which 17 were trees, 47 shrubs, 7 climbers and 101 herbaceous perennials. The results indicated that a major part of the shrubs, climbers and perennials presumably originated from the 1970?s or later, whereas ca. 70 % of the tree specimens were deemed as original. The survey disclosed a heritage variety of common lilac, resembling cultivar „Prince Notger?, a specific peony taxon, Paeonia humilis Retz., cultivated in Nordic countries since long ago, and a few historic iris varieties. Well-preserved design elements included front gardens on one side of the quarter, a maple alley on another side as well as trees at the garden gates. Old garden books and magazines did not shed much light on the Finnish garden flora commonly used in the period when Puu-Käpylä was built. However, they gave a valuable picture of contemporary planting design. Nursery catalogues offered insight into the assortment of ornamental plants traded in the 1920?s. Conclusions on the authenticity of the current flora were mainly drawn on the basis of old photographs and a vegetation survey map drawn in the 1970?s. This study revealed a need for standardization of syrvey methods applied when investigating garden floras. Uniform survey techniques would make the results comparable and enable a future compilation of data from e.g. historic gardens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One major reason for the global decline of biodiversity is habitat loss and fragmentation. Conservation areas can be designed to reduce biodiversity loss, but as resources are limited, conservation efforts need to be prioritized in order to achieve best possible outcomes. The field of systematic conservation planning developed as a response to opportunistic approaches to conservation that often resulted in biased representation of biological diversity. The last two decades have seen the development of increasingly sophisticated methods that account for information about biodiversity conservation goals (benefits), economical considerations (costs) and socio-political constraints. In this thesis I focus on two general topics related to systematic conservation planning. First, I address two aspects of the question about how biodiversity features should be valued. (i) I investigate the extremely important but often neglected issue of differential prioritization of species for conservation. Species prioritization can be based on various criteria, and is always goal-dependent, but can also be implemented in a scientifically more rigorous way than what is the usual practice. (ii) I introduce a novel framework for conservation prioritization, which is based on continuous benefit functions that convert increasing levels of biodiversity feature representation to increasing conservation value using the principle that more is better. Traditional target-based systematic conservation planning is a special case of this approach, in which a step function is used for the benefit function. We have further expanded the benefit function framework for area prioritization to address issues such as protected area size and habitat vulnerability. In the second part of the thesis I address the application of community level modelling strategies to conservation prioritization. One of the most serious issues in systematic conservation planning currently is not the deficiency of methodology for selection and design, but simply the lack of data. Community level modelling offers a surrogate strategy that makes conservation planning more feasible in data poor regions. We have reviewed the available community-level approaches to conservation planning. These range from simplistic classification techniques to sophisticated modelling and selection strategies. We have also developed a general and novel community level approach to conservation prioritization that significantly improves on methods that were available before. This thesis introduces further degrees of realism into conservation planning methodology. The benefit function -based conservation prioritization framework largely circumvents the problematic phase of target setting, and allowing for trade-offs between species representation provides a more flexible and hopefully more attractive approach to conservation practitioners. The community-level approach seems highly promising and should prove valuable for conservation planning especially in data poor regions. Future work should focus on integrating prioritization methods to deal with multiple aspects in combination influencing the prioritization process, and further testing and refining the community level strategies using real, large datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual systems of humans and animals represent physical reality in a modified way, depending on the specific demands that the species in question has for survival. The ability to perceive visual illusions is found in independently evolved visual systems, from honeybees to humans. In humans, the ability emerges early, at the age of four months. Thus the perception of illusion is likely to reflect visual processes of fundamental importance for object perception in natural vision. The experiments reported in this thesis employed various modifications of the Kanizsa triangle, a drawn configuration composed of three black disks with missing sectors on a white background. The sectors appear to form the tips of a triangle. The visual system completes the physically empty area between the disks, generally called inducers, with giving the perception of an illusory triangle. The illusory triangle consists of an illusory surface bounded by illusory contours; the triangle appears brighter than and to lie above the background. If the sectors are coloured, the colour fills the illusory area, a phenomenon known as neon colour spreading . We investigated spatial limitations on the perception of Kanizsa-type illusions and how other stimuli and viewing parameters affected these limitations. We also studied complex configurations thick, bent, mobile and chromatic inducers - to determine whether illusions combining several attributes can be perceived. The results suggest that the visual system is highly effective in completing a percept. The perception of an illusory figure is spatially scale invariant when perceived at threshold. The processing time and the number of fixations modify the percept, making the perception of the illusion more probable in various viewing conditions. Furthermore, the fact that the illusion can be perceived when only one inducer is physically present at any given moment indicates the potential of single inducers. Apparently, modelling illusory figure perception will require a combination of low-level, local processes and higher-level integrative processes. Our studies with stimuli combining several attributes relevant to object perception demonstrate that the perception of an illusory figure is flexible and is maintained also when it contains colour and volume and when shown in movement. All in all, the results confirm the assumed importance of the visual processes related with the perception of illusory figures in everyday viewing. This is indicated by the variety of inducer modifications that can be made without destroying the percept. Furthermore, the illusion can acquire additional attributes from such modifications. Due to individual differences in the perception of illusory figures, universal values for absolute performance are not always meaningful, but stable trends and general relations do exist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When genome sections of wild Solanum species are bred into the cultivated potato (S. tuberosum L.) to obtain improved potato cultivars, the new cultivars must be evaluated for their beneficial and undesirable traits. Glycoalkaloids present in Solanum species are known for their toxic as well as for beneficial effects on mammals. On the other hand, glycoalkaloids in potato leaves provide natural protection against pests. Due to breeding, glycoalkaloid profile of the plant is affected. In addition, the starch properties in potato tubers can be affected as a result of breeding, because the crystalline properties are determined by the botanical source of the starch. Starch content and composition affect the texture of cooked and processed potatoes. In order to determine glycoalkaloid contents in Solanum species, simultaneous separation of glycoalkaloids and aglycones using reversed-phase high-performance liquid chromatography (HPLC) was developed. Clean-up of foliage samples was improved using a silica-based strong cation exchanger instead of octadecyl phases in solid-phase extraction. Glycoalkaloids alpha-solanine and alpha-chaconine were detected in potato tubers of cvs. Satu and Sini. The total glycoalkaloid concentration of non-peeled and immature tubers was at an acceptable level (under 20 mg/100 g of FW) in the cv. Satu, whereas concentration in cv. Sini was 23 mg/100 g FW. Solanum species (S. tuberosum, S. brevidens, S. acaule, and S. commersonii) and interspecific somatic hybrids (brd + tbr, acl + tbr, cmm + tbr) were analyzed for their glycoalkaloid contents using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). The concentrations in the tubers of the brd + tbr and acl + tbr hybrids remained under 20 mg/100 g FW. Glycoalkaloid concentration in the foliage of the Solanum species was between 110 mg and 890 mg/100 g FW. However, the concentration in the foliage of S. acaule was as low as 26 mg/100 g FW. The total concentrations of brd + tbr, acl + tbr, and cmm + tbr hybrid foliages were 88 mg, 180 mg, and 685 mg/100 g FW, respectively. Glycoalkaloids of both parental plants as well as new combinations of aglycones and saccharides were detected in somatic hybrids. The hybrids contained mainly spirosolanes, and glycoalkaloid structures having no 5,6-double bond in the aglycone. Based on these results, the glycoalkaloid profiles of the hybrids may represent a safer and more beneficial spectrum of glycoalkaloids than that found in currently cultivated varieties. Starch nanostructure of three different cultivars (Satu, Saturna, and Lady Rosetta), a wild species S. acaule, and interspecific somatic hybrids were examined by wide-angle and small-angle X-ray scattering (WAXS, SAXS). For the first time, the measurements were conducted on fresh potato tuber samples. Crystallinity of starch, average crystallite size, and lamellar distance were determined from the X-ray patterns. No differences in the starch nanostructure between the three different cultivars were detected. However, tuber immaturity was detected by X-ray scattering methods when large numbers of immature and mature samples were measured and the results were compared. The present study shows that no significant changes occurred in the nanostructures of starches resulting from hybridizations of potato cultivars.