21 resultados para hepatic
Resumo:
Hypertension, obesity, dyslipidemia and dysglycemia constitute metabolic syndrome, a major public health concern, which is associated with cardiovascular mortality. High dietary salt (NaCl) is the most important dietary risk factor for elevated blood pressure. The kidney has a major role in salt-sensitive hypertension and is vulnerable to harmful effects of increased blood pressure. Elevated serum urate is a common finding in these disorders. While dysregulation of urate excretion is associated with cardiovascular diseases, present studies aimed to clarify the role of xanthine oxidoreductase (XOR), i.e. xanthine dehydrogenase (XDH) and its post-translational isoform xanthine oxidase (XO), in cardiovascular diseases. XOR yields urate from hypoxanthine and xanthine. Low oxygen levels upregulate XOR in addition to other factors. In present studies higher renal XOR activity was found in hypertension-prone rats than in the controls. Furthermore, NaCl intake increased renal XOR dose-dependently. To clarify whether XOR has any causal role in hypertension, rats were kept on NaCl diets for different periods of time, with or without a XOR inhibitor, allopurinol. While allopurinol did not alleviate hypertension, it prevented left ventricular and renal hypertrophy. Nitric oxide synthases (NOS) produce nitric oxide (NO), which mediates vasodilatation. A paucity of NO, produced by NOS inhibition, aggravated hypertension and induced renal XOR, whereas NO generating drug, alleviated salt-induced hypertension without changes in renal XOR. Zucker fa/fa rat is an animal model of metabolic syndrome. These rats developed substantial obesity and modest hypertension and showed increased hepatic and renal XOR activities. XOR was modified by diet and antihypertensive treatment. Cyclosporine (CsA) is a fungal peptide and one of the first-line immunosuppressive drugs used in the management of organ transplantation. Nephrotoxicity ensue high doses resulting in hypertension and limit CsA use. CsA increased renal XO substantially in salt-sensitive rats on a high NaCl diet, indicating a possible role for this reactive oxygen species generating isoform in CsA nephrotoxicity. Renal hypoxia, common to these rodent models of hypertension and obesity, is one of the plausible XOR inducing factors. Although XOR inhibition did not prevent hypertension, present experimental data indicate that XOR plays a role in the pathology of salt-induced cardiac and renal hypertrophy.
Resumo:
Diet high in dairy products is inversely associated with body mass index, risk of metabolic syndrome and prevalence of type 2 diabetes in several populations. Also a number of intervention studies support the role of increased dairy intake in the prevention and treatment of obesity. Dairy calcium has been suggested to account for the effect of dairy on body weight, but it has been repeatedly shown that the effect of dairy is superior to the effect of supplemental calcium. Dairy proteins are postulated to either enhance the effect of calcium or have an independent effect on body weight, but studies in the area are scarce. The aim of this study was to evaluate the potential of dairy proteins and calcium in the prevention and treatment of diet-induced obesity in C57Bl/6J mice. The effect of dairy proteins and calcium on the liver and adipose tissue was also investigated in order to characterise the potential mechanisms explaining the reduction of risk for metabolic syndrome and type 2 diabetes. A high-calcium diet (1.8%) in combination with dietary whey protein inhibited body weight and fat gain and accelerated body weight and fat loss in high-fat-fed C57Bl/6J mice during long-term studies of 14 to 21 weeks. α-lactalbumin, one of the major whey proteins, was the most effective whey protein fraction showing significantly accelerated weight and fat loss during energy restriction and reduced the amount of visceral fat gain during ad libitum feeding after weight loss. The microarray data suggest sensitisation of insulin signalling in the adipose tissue as a result of a calcium-rich whey protein diet. Lipidomic analysis revealed that weight loss on whey protein-based high-calcium diet was characterised by significant decreases in diabetogenic diacylglycerols and lipotoxic ceramide species. The calcium supplementation led to a small, but statistically significant decrease in fat absorption independent of the protein source of the diet. This augments, but does not fully explain the effects of the studied diets on body weight. A whey protein-containing high-calcium diet had a protective effect against a high-fat diet-induced decline of β3 adrenergic receptor expression in adipose tissue. In addition, a high-calcium diet with whey protein increased the adipose tissue leptin expression which is decreased in this obesity-prone mouse strain. These changes are likely to contribute to the inhibition of weight gain. The potential sensitisation of insulin signalling in adipose tissue together with the less lipotoxic and diabetogenic hepatic lipid profile suggest a novel mechanistic link to explain why increased dairy intake is associated with a lower prevalence of metabolic syndrome and type 2 diabetes in epidemiological studies. Taken together, the intake of a high-calcium diet with dairy proteins has a body weight lowering effect in high-fat-fed C57Bl/6J mice. High-calcium diets containing whey protein prevent weight gain and enhance weight loss, α-lactalbumin being the most effective whey protein fraction. Whey proteins and calcium have also beneficial effects on hepatic lipid profile and adipose tissue gene expression, which suggest a novel mechanistic link to explain the epidemiological findings on dairy intake and metabolic syndrome. The clinical relevance of these findings and the precise mechanisms of action remain an intriguing field of future research.
Resumo:
Cardiovascular diseases, which presently are considered inflammatory diseases, affect millions of people worldwide. Chronic infections may contribute to the systemic inflammation suggested to increase the risk for cardiovascular diseases. Such chronic infections are periodontitis and Chlamydia pneumoniae infection. They are highly prevalent as approximately 10% of adult population and 30% of people over 50 years old are affected by severe periodontitis and 70-80% of elderly people are seropositive for C. pneumoniae. Our general aim was to investigate the role of infection and inflammation in atherosclerosis both in animal and human studies. We aimed to determine how the two pathogens alter the atherosclerosis-associated parameters, and how they affect the liver inflammation and lipid composition. Furthermore, we evaluated the association between matrix metalloproteinase-8 (MMP-8), a proteinase playing a major role in inflammation, and the future cardiovascular diseases (CVD) events in a population-based cohort. For the animal experiments, we used atherosclerosis-susceptible apolipoprotein E deficient (apoE-/-) mice. They were kept in germ free conditions and fed with a normal chow diet. The bacteria were administered either intravenously (A. actinomycetemcomitans) or intranasally (C. pneumoniae). Several factors were determined from serum as well as from aortic and hepatic tissues. We also determined how cholesterol efflux, a major event in the removal of excess cholesterol from the tissues, and endothelial function were affected by these pathogens. In the human study, serum MMP-8 and its tissue inhibitor (TIMP-1) concentrations were measured and their associations during the follow-up time of 10 years with CVD events were determined. An infection with A. actinomycetemcomitans increased concentrations of inflammatory mediators, MMP production, and cholesterol deposit in macrophages, decreased lipoprotein particle size, and induced liver inflammation. C. pneumoniae infection also elicited an inflammatory response and endothelial dysfunction, as well as induced liver inflammation, microvesicular appearance and altered fatty acid profile. In the population-based cohort, men with increased serum MMP-8 concentration together with subclinical atherosclerosis (carotid artery intima media thickness > 1mm) had a three-fold increased risk for CVD death during the follow-up. The results show that infections with A. actinomycetemcomitans and C. pneumoniae induce proatherogenic changes, as well as affect the liver. These data therefore support the concept that common infections have systemic effects and could be considered as cardiovascular risk factors. Furthermore, our data indicate that, as an independent predictor of fatal CVD event, serum MMP-8 could have a clinical significance in diagnosing cardiovascular diseases.
Resumo:
Reverse cholesterol transport (RCT) is an important function of high-density lipoproteins (HDL) in the protection of atherosclerosis. RCT is the process by which HDL stimulates cholesterol removal from peripheral cells and transports it to the liver for excretion. Premenopausal women have a reduced risk for atherosclerosis compared to age-matched men and there exists a positive correlation for serum 17β-estradiol (E2) and HDL levels in premenopausal women supporting the role of E2 in atherosclerosis prevention. In premenopausal women, E2 associates with HDL as E2 fatty acyl esters. Discovery of the cellular targets, metabolism, and assessment of the macrophage cholesterol efflux potential of these HDL-associated E2 fatty acyl esters were the major objectives of this thesis (study I, III, and IV). Soy phytoestrogens, which are related to E2 in both structure and function, have been proposed to be protective against atherosclerosis but the evidence to support these claims is conflicting. Therefore, another objective of this thesis was to assess the ability of serum from postmenopausal women, treated with isoflavone supplements (compared to placebo), to promote macrophage cholesterol efflux (study II). The scope of this thesis was to cover the roles that HDL-associated E2 fatty acyl esters have in the cellular aspects of RCT and to determine if soy isoflavones can also influence RCT mechanisms. SR-BI was a pivotal cellular receptor, responsible for hepatic and macrophage uptake and macrophage cholesterol efflux potential of HDL-associated E2 fatty acyl esters. Functional SR-BI was also critical for proper LCAT esterification activity which could impact HDL-associated E2 fatty acyl ester assembly and its function. In hepatic cells, LDL receptors also contributed to HDL-associated E2 fatty acyl esters uptake and in macrophage cells, estrogen receptors (ERs) were necessary for both HDL-associated E2 ester-specific uptake and cholesterol efflux potential. HDL-containing E2 fatty acyl esters (E2-FAE) stimulated enhanced cholesterol efflux compared to male HDL (which are deficient in E2) demonstrating the importance of the E2 ester in this process. To support this, premenopausal female HDL, which naturally contains E2, showed greater macrophage cholesterol efflux compared to males. Additionally, hepatic and macrophage cells hydrolyzed the HDL-associated E2 fatty acyl ester into unesterified E2. This could have important biological ramifications because E2, not the esterified form, has potent cellular effects which may influence RCT mechanisms. Lastly, soy isoflavone supplementation in postmenopausal women did not modulate ABCA1-specific macrophage cholesterol efflux but did increase production of plasma pre-β HDL levels, a subclass of HDL. Therefore, the impact of isoflavones on RCT and cardiovascular health needs to be further investigated. Taken as a whole, HDL-associated E2 fatty acyl esters from premenopausal women and soy phytoestrogen treatment in postmenopausal women may be important factors that increase the efficiency of RCT through cellular lipoprotein-related processes and may have direct implications on the cardiovascular health of women.
Resumo:
Alcoholic liver disease (ALD) is a well recognized and growing health problem worldwide. ALD advances from fatty liver to inflammation, necrosis, fibrosis and cirrhosis. There is accumulating evidence that the innate immune system is involved in alcoholic liver injury. Within the innate and acquired immune systems, the complement system participates in inflammatory reactions and in the elimination of invading foreign, as well as endogenous apoptotic or injured cells. The present study aimed at evaluating the role of the complement system in the development of alcoholic liver injury. First, in order to study the effects of chronic ethanol intake on the complement system, the deposition of complement components in liver and the expression of liver genes associated with complement in animals with alcohol-induced liver injury were examined. It was demonstrated that chronic alcohol exposure leads to hepatic deposition of the complement components C1, C3, C8 and C9 in the livers of rats. Liver gene expression analysis showed that ethanol up-regulated the expression of transcripts for complement factors B, C1qA, C2, C3 and clusterin. In contrast, ethanol down-regulated the expression of the complement regulators factor H, C4bp and factor D and the terminal complement components C6, C8α and C9. Secondly, the role of the terminal complement pathway in the development of ALD was evaluated by using rats genetically deficient in the complement component C6 (C6-/-). It was found that chronic ethanol feeding induced more liver pathology (steatosis and inflammatory changes) in C6-/- rats than in wild type rats. The hepatic triacylglyceride content and plasma alanine aminotransferase activity increased in C6-/- rats, supporting the histopathological findings and elevation of the plasma pro-/anti-inflammatory TNF-/IL-10 ratio was also more marked in C6-/- rats. Third, the role of the alternative pathway in the development of alcoholic liver steatosis was characterized by using C3-/- mice. In C3-/- mice ethanol feeding tended to reduce steatosis and had no further effect on liver triacylglyceride, liver/body weight ratio nor on liver malondialdehyde level and serum alanine aminotransferase activity. In C3-/- mice alcohol-induced liver steatosis was reduced also after an acute alcohol challenge. In both wild type and C3-/- mice ethanol markedly reduced serum cholesterol and ApoA-I levels, phospholipid transfer protein activity and hepatic mRNA levels of fatty acid binding proteins and fatty acid -oxidation enzymes. In contrast, exclusively in C3-/- mice, ethanol treatment increased serum and liver adiponectin levels but down-regulated the expression of transcripts of lipogenic enzymes, adiponectin receptor 2 and adipose differentiation-related protein and up-regulated phospholipase D1. In conclusion, this study has demonstrated that the complement system is involved in the development of alcohol-induced liver injury. Chronic alcohol exposure causes local complement activation and induction of mRNA expression of classical and alternative pathway components in the liver. In contrast expression of the terminal pathway components and soluble regulators were decreased. A deficient terminal complement pathway predisposes to alcoholic liver damage and promotes a pro-inflammatory cytokine response. Complement component C3 contributes to the development of alcohol-induced fatty liver and its consequences by affecting regulatory and specific transcription factors of lipid homeostasis.
Resumo:
Torque teno virus (TTV) was discovered in 1997 in the serum of a Japanese patient who had a post-transfusion hepatitis of unknown etiology. It is a small virus containing a circular single-stranded DNA genome which is unique among human viruses. Within a few years after its discovery, the TTVs were noted to form a large family of viruses with numerous genotypes. TTV is highly prevalent among the general population throughout the world, and persistent infections and co-infections with several genotypes occur frequently. However, the pathogenicity and the mechanism for the sustained occurrence of the virus in blood are at present unclear. To determine the prevalence of TTV in Finland, we set up PCR methods and examined the sera of asymptomatic subjects for the presence of TTV DNA and for genotype-6 DNA. TTV was found to be highly prevalent also in Finland; 85% of adults harbored TTV in their blood, and 4% were infected with genotype-6. In addition, TTV DNA was detected in a number of different tissues, with no tissue-type or symptom specificity. Most cell-biological events during TTV infections are at the moment unknown. Replicating TTV DNA has, however, been detected in liver and the hematopoietic compartment, and three mRNAs are known to be generated. To characterize TTV cell biology in more detail, we cloned in full length the genome of TTV genotype 6. We showed that in human kidney-derived cells TTV produces altogether six proteins with distinct subcellular localizations. TTV mRNA transcription was detected in all cell lines transfected with the full-length clone, and TTV DNA replicated in several of them, including those of erythroid, kidney, and hepatic origin. Furthermore, the viral DNA replication was shown to utilize the cellular DNA polymerases. Diagnoses of TTV infections have been based almost solely on PCR, whereas serological tests, measuring antibody responses, would give more information on many aspects of these infections. To investigate the TTV immunology in more detail, we produced all six TTV proteins for use as antigens in serological tests. We detected in human sera IgM and IgG antibodies to occur simultaneously with TTV DNA, and observed appearance of TTV DNA regardless of pre-existing antibodies, and disappearance of TTV DNA after antibody appearance. The genotype-6 nucleotide sequence remained stable for years within the infected subjects, suggesting that some mechanism other than mutations is used by this minute virus to evade our immune system and to establish chronic infections in immunocompetent subjects.
Resumo:
Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.
Resumo:
The Baltic Sea was studied with respect to selected organic contaminants and their ecotoxicology. The research consisted of analyses of total hydrocarbons, polycyclic aromatic hydrocarbons, bile metabolites, hepatic ethoxyresorufin-O-deethylase (EROD) activity, polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The contaminants were measured from various matrices, such as seawater, sediment and biota. The methods of analysis were evaluated and refined to comparability of the results. Polyaromatic hydrocarbons, originating from petroleum, are known to be among the most harmful substances to the marine environment. In Baltic subsurface water, seasonal dependence of the total hydrocarbon concentrations (THCs) was seen. Although concentrations of parent polycyclic aromatic hydrocarbons (PAHs) in sediment surface varied between 64 and 5161 ug kg-1 (dw), concentrations above 860 ug kg-1 (dw) were found in all the studied sub-basins of the Baltic Sea. Concentrations commonly considered to substantially increase the risk of liver disease and reproductive impairment in fish, as well as potential effects on growth (above 1000 ug kg-1 dw), were found in all the studied sub-basins of the Baltic Sea except Kattegat. Thus, considerable pollution in sediments was indicated. In bivalves, the sums of 12 PAHs varied on a wet weight basis between 44 and 298 ug kg-1 (ww). The predominant PAHs were high molecular weight and the PAH profiles of M. balthica differed from those found in sediment from the same area. The PAHs were both pyrolytic and petrogenic in origin, and a contribution from diesel engines was found, which indicates pollution of the Baltic Sea, most likely caused by the steadily increasing shipping in the area. The HPLC methods developed for hepatic EROD activity and bile metabolite measurements proved to be fast and suitable for the study of biological effects. A mixed function oxygenase enzyme system in Baltic Sea perch collected from the Gulf of Finland was induced slightly: EROD activity in perch varied from 0.30 14 pmol min-1 mg-1 protein. This range can be considered to be comparable to background values. Recent PAH exposure was also indicated by enhanced levels (213 and 1149 ug kg-1) of the bile metabolite 1-hydroxypyrene. No correlation was indicated between hepatic EROD activity and concentration of 1-hydroxypyrene in bile. PCBs and OCPs were observed in Baltic Sea sediment, bivalves and herring. Sums of seven CBs in surface sediment (0 5 cm) ranged from 0.04 to 6.2 ug kg-1 (dw) and sums of three DDTs from 0.13 to 5.0 ug kg-1 (dw). The highest levels of contaminants were found in the most eastern area of the Gulf of Finland where the highest total carbon and nitrogen content was found and where the lowest percentage proportion of p,p -DDT was found. The highest concentrations of CBs and the lowest concentration of DDTs were found in M. balthica from the Gulf of Finland. The highest levels of DDTs were found in M. balthica from the Hanö Bight, which is the outer part of the Bornholm Basin close to the Swedish mainland. In bivalves, the sums of seven CBs were 72 108 ug kg-1 (lw) and the sums of three DDTs were 66 139 ug kg-1 (lw). Results from temporal trend monitoring showed, that during the period 1985 2002, the concentrations of seven CBs in two-year-old female Baltic herring were clearly decreased, from 9 16 to 2 6 ug kg-1 (ww) in the northern Baltic Sea. At the same time, concentrations of three DDTs declined from 8 15 to 1 5 ug kg-1 (ww). The total concentration of the fat-soluble CBs and DDTs in Baltic herring muscle was shown to be age-dependent; the average concentrations in ten-year-old Baltic herring were three to five-fold higher than in two-year-old herring. In Baltic herring and bivalves, as well as in surface sediments, CB 138 and CB153 were predominant among CBs, whereas among DDTs p,p'-DDD predominated in sediment and p,p'-DDE in bivalves and Baltic herring muscle. Baltic Sea sediments are potential sources of contaminants that may become available for bioaccumulation. Based on ecotoxicological assessment criteria, cause for concern regarding CBs in sediments was indicated for the Gulf of Finland and the northern Baltic Proper, and for the northern Baltic Sea regarding CBs in Baltic herring more than two years old. Statistical classification of selected organic contaminants indicated high-level contamination for p,p'-DDT, p,p'-DDD, p,p'-DDE, total DDTs, HCB, CB118 and CB153 in muscle of Baltic herring in age groups two to ten years; in contrast, concentrations of a-HCH and g-HCH were found to be moderate. The concentrations of DDTs and CBs in bivalves is sufficient to cause biological effects, and demonstrates that long-term biological effects are still possible in the case of DDTs in the Hanö Bight.
Resumo:
Mammalian gastrointestinal tract and liver are self-renewing organs that are able to sustain themselves due to stem cells present in their tissues. In constant, inflammation-related epithelial damage, vigorous activation of stem cells may lead to their uncontrolled proliferation, and further, to cancer. GATA-4, GATA-5, and GATA-6 regulate cell proliferation and differentiation in many mammalian organs. Lack of GATA-4 or GATA-6 leads to defective endodermal development and cell differentiation. GATA-4 and GATA-5 are considered the ones with tumor suppressive functions, whereas GATA-6 is more related to tumor promotion. In the digestive system their roles in inflammation and tumor-related molecular pathways remain unclear. In this study, we examined the GATA-related molecular pathways involved in normal tissue organization and renewal and in inflammation-related epithelial repair in the gastrointestinal tract and liver. The overall purpose of this study was to elucidate the relation of GATA factors to gastrointestinal and hepatic disease pathology and to evaluate their possible clinical significance in tumor biology. The results indicated distinct expression patterns for GATA-4, GATA-5, and GATA-6 in the human and murine gastrointestinal tract and liver, and their involvement in the regulation of intestine-specific genes. GATA-5 was confined to the intestines of suckling mice, suggesting an association with postnatal enzymatic changes. GATA-4 was upregulated in bowel inflammation concomitantly with TGF-β signaling. In gastrointestinal tumors, GATA-4 was restricted to benign neoplasias of the stomach, while GATA-6 was detected especially at the invasive edges of malignant tumors throughout the gut. In the liver, GATA-4 was upregulated in pediatric tumors along with erythropoietin (Epo), which was detected also in the sera of tumor patients. Furthermore, GATA-4 was enhanced in areas of vigorous hepatic regeneration in patients with tyrosinemia type I. These results suggest a central role for GATA-4 in pediatric tumor biology of the liver. To conclude, GATA-4, GATA-5, and GATA-6 are associated with normal gastrointestinal and hepatic development and regeneration. The appearance of GATA-4 along with TGF-β-signaling in the inflammatory bowel suggests a protective role in the response to inflammation-related epithelial destruction. However, in extremely malignant pediatric liver tumors, GATA-4 function is unlikely to be tumor-suppressing, probably due to the nature of the very primitive multipotent tumor cells. GATA-4, along with its possible downstream factor Epo, could be utilized as novel hepatic tumor markers to supplement the present diagnostics. They could also serve a function in future biological therapies for aggressive pediatric tumors.
Resumo:
Introduction: The epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). However, not all obese subjects develop these metabolic abnormalities. Hepatic fat accumulation is related to hepatic insulin resistance, which in turn leads to hyperglycemia, hypertriglyceridemia, and a low HDL cholesterol con-centration. The present studies aimed to investigate 1) how intrahepatic as compared to intramyocellular fat is related to insulin resistance in these tissues and to the metabolic syndrome (Study I); 2) the amount of liver fat in subjects with and without the metabolic syndrome, and which clinically available markers best reflect liver fat content (Study II); 3) the effect of liver fat on insulin clearance (Study III); 4) whether type 2 diabetic patients have more liver fat than age-, gender-, and BMI-matched non-diabetic subjects (Study IV); 5) how type 2 diabetic patients using exceptionally high doses of insulin respond to addition of a PPARγ agonist (Study V). Subjects and methods: The study groups consisted of 45 (Study I), 271 (Study II), and 80 (Study III) non-diabetic subjects, and of 70 type 2 diabetic patients and 70 matched control subjects (Study IV). In Study V, a total of 14 poorly controlled type 2 diabetic patients treated with high doses of insulin were studied before and after rosiglitazone treatment (8 mg/day) for 8 months. In all studies, liver fat content was measured by proton magnetic resonance spectroscopy, and sub-cutaneous and intra-abdominal fat content by MRI. In addition, circulating markers of insulin resistance and serum liver enzyme concentrations were determined. Hepatic (i.v. insulin infusion rate 0.3 mU/kg∙min combined with [3-3H]glucose, Studies I, III, and V) and muscle (1.0 mU/kg min, Study I) insulin sensitivities were measured by the euglycemic hyperinsulinemic clamp technique. Results: Fat accumulation in the liver rather than in skeletal muscle was associated with features of insulin resistance, i.e. increased fasting serum (fS) triglycerides and decreased fS-HDL cholesterol, and with hyperinsulinemia and low adiponectin concentrations (Study I). Liver fat content was 4-fold higher in subjects with as compared to those without the metabolic syndrome, independent of age, gender, and BMI. FS-C-peptide was the best correlate of liver fat (Study II). Increased liver fat was associated with both impaired insulin clearance and hepatic insulin resistance independent of age, gender, and BMI (Study III). Type 2 diabetic patients had 80% more liver fat than age-, weight-, and gender-matched non-diabetic subjects. At any given liver fat content, S-ALT underestimated liver fat in the type 2 diabetic patients as compared to the non-diabetic subjects (Study IV). In Study V, hepatic insulin sensitivity increased and glycemic control improved significantly during rosiglitazone treatment. This was associated with lowering of liver fat (on the average by 46%) and insulin requirements (40%). Conclusions: Liver fat is increased both in the metabolic syndrome and type 2 diabetes independent of age, gender, and BMI. A fatty liver is associated with both hepatic insulin resistance and impaired insulin clearance. Rosi-glitazone may be particularly effective in type 2 diabetic patients who are poorly controlled despite using high insulin doses.
Resumo:
Rejection and infections are the two most common complications after liver transplantation. Human herpesvirus-6 (HHV-6) belongs to the betaherpesviruses, together with its close relatives cytomegalovirus (CMV) and human herpesvirus-7 (HHV-7). The impact of CMV in liver transplantation is well characterized, but the roles of the other two betaherpesviruses have been acknowledged only recently. Although, HHV-6 reactivation after transplantation is usually asymptomatic, the virus may infect the liver transplant, cause an intragraft lymphocyte dominated inflammatory reaction and graft dysfunction. HHV-6 is also suggested to be associated with liver allograft rejection but the mechanisms are unclear. The aim of this study was to investigate the intragraft immunological processes associated with HHV-6, the involvement of HHV-6 in acute liver failure (ALF) and the hepatic HHV-6 infection of the same patients after transplantation. In addition, the occurrence of HHV-6 and HHV-7 was investigated in liver transplant patients with symptomatic CMV infection. HHV-6 infection of the liver graft was associated with portal lymphocyte infiltration and with a significant increase of adhesion molecules (ICAM-1 and VCAM-1) and the number of cells expressing their ligand molecules (LFA-1, VLA-4) and class II antigens. HHV-6 infection was associated with significant immunological changes, but the immune response was limited to lymphocyte infiltration and the adhesion molecule level. However, one third of these patients developed chronic rejection during the follow-up. Of the patients with ALF of unknown origin, most patients demonstrated HHV-6 antigens in the liver, whereas the opposite was seen in ALF patients with a known disease. After transplantation, HHV-6 recurrence was found in the liver transplant in half of these patients with pre-transplant HHV-6 infection of the liver, whereas no post-transplant HHV-6 infection of the liver was seen in patients without pre-transplant HHV-6. Our studies further demonstrated that both HHV-6 and HHV-7 antigenemia often appeared in association with CMV disease in liver transplant patients. The time-related occurrence of the viruses differed, as HHV-6 appeared early after transplantation and regularly preceded CMV whereas HHV-7 often appeared concurrently with CMV. In conclusion, these results indicate that all three betaherpesviruses are common after liver transplantation, often associated with each other. The immunological events caused by HHV-6 in the liver transplant may be involved in, or trigger mechanisms of allograft rejection. In addition, HHV-6 could be one of the causes of ALF, and pre-transplant HHV-6 infection in ALF patients is a risk factor for post-transplant HHV-6 infection of the graft. These results strongly support the clinical significance of HHV-6 in liver transplantation. Even though the reactivation is usually asymptomatic, in some individuals HHV-6 infection may lead to severe manifestations, such as liver failure or in transplant patients, graft dysfunction and rejection.
Resumo:
The Molecular Adsorbent Recirculating System (MARS) is an extracorporeal albumin dialysis device which is used in the treatment of liver failure patients. This treatment was first utilized in Finland in 2001, and since then, over 200 patients have been treated. The aim of this thesis was to evaluate the impact of the MARS treatment on patient outcome, the clinical and biochemical variables, as well as on the psychological and economic aspects of the treatment in Finland. This thesis encompasses 195 MARS-treated patients (including patients with acute liver failure (ALF), acute-on-chronic liver failure (AOCLF) and graft failure), and a historical control group of 46 ALF patients who did not undergo MARS. All patients received a similar standard medical therapy at the same intensive care unit. The baseline data (demographics, laboratory and clinical variables) and MARS treatment-related and health-related quality-of-life data were recorded before and after treatment. The direct medical costs were determined for a period of 3.5 years.Additionally, the outcome of patients (survival, native liver recovery and need for liver transplantation) and survival predicting factors were investigated. In the outcome analysis, for the MARS-treated ALF patients, their 6-month survival (75% vs. 61%, P=0.07) and their native liver recovery rate (49% vs. 17%, P<0.001) were higher, and their need for transplantations was lower (29% vs. 57%, P= 0.001) than for the historical controls. However, the etiological distribution of the ALF patients referred to our unit has changed considerably over the past decade and the percentage of patients with a more favorable prognosis has increased. The etiology of liver failure was the most important predictor of the outcome. Other survival predicting factors in ALF included hepatic encephalopathy, the coagulation factors and the liver enzyme levels prior to MARS treatment. In terms of prognosis, the MARS treatment of the cirrhotic AOCLF patient seems meaningful only when the patient is eligible for transplantation. The MARS treatment appears to halt the progression of encephalopathy and reduce the blood concentration of neuroactive amino acids, albumin-bound and water-soluble toxins. In general, the effects of the MARS treatment seem to stabilize the patients, thus allowing additional time either for the native liver to recover, or for the patients to endure the prolonged waiting for transplantation. Furthermore, for the ALF patients, the MARS treatment appeared to be less costly and more cost-efficient than the standard medical therapy alone. In conclusion, the MARS treatment appears to have a beneficial effect on the patient outcome in ALF and in those AOCLF patients who can be bridged to transplantation.
Resumo:
Introduction Repaglinide is a short-acting drug, used to reduce postprandial hyperglycaemia in type 2 diabetic patients. Repaglinide is extensively metabolised, and its oral bioavailability is about 60%; its metabolites are mainly excreted into bile. In previous studies, the cytochrome P450 (CYP) 3A4 inhibitors itraconazole and clarithromycin have moderately increased the area under the concentration-time curve (AUC) of repaglinide. Gemfibrozil, a CYP2C8 inhibitor, has greatly increased repaglinide AUC, enhancing and prolonging its blood glucose-lowering effect. Rifampicin has decreased the AUC and effects of repaglinide. Aims The aims of this work were to investigate the contribution of CYP2C8 and CYP3A4 to the metabolism of repaglinide, and to study other potential drug interactions affecting the pharmacokinetics of repaglinide, and the mechanisms of observed interactions. Methods The metabolism of repaglinide was studied in vitro using recombinant human CYP enzymes and pooled human liver microsomes (HLM). The effect of trimethoprim, cyclosporine, bezafibrate, fenofibrate, gemfibrozil, and rifampicin on the metabolism of repaglinide, and the effect of fibrates and rifampicin on the activity of CYP2C8 and CYP3A4 were investigated in vitro. Randomised, placebo-controlled cross-over studies were carried out in healthy human volunteers to investigate the effect of bezafibrate, fenofibrate, trimethoprim, cyclosporine, telithromycin, montelukast and pioglitazone on the pharmacokinetics and pharmacodynamics of repaglinide. Pretreatment with clinically relevant doses of the study drug or placebo was followed by a single dose of repaglinide, after which blood and urine samples were collected to determine pharmacokinetic and pharmacodynamic parameters. Results In vitro, the contribution of CYP2C8 was similar to that of CYP3A4 in the metabolism of repaglinide (< 2 μM). Bezafibrate, fenofibrate, gemfibrozil, and rifampicin moderately inhibited CYP2C8 and repaglinide metabolism, but only rifampicin inhibited CYP3A4 in vitro. Bezafibrate, fenofibrate, montelukast, and pioglitazone had no effect on the pharmacokinetics and pharmacodynamics of repaglinide in vivo. The CYP2C8 inhibitor trimethoprim inhibited repaglinide metabolism by HLM in vitro and increased repaglinide AUC by 61% in vivo (P < .001). The CYP3A4 inhibitor telithromycin increased repaglinide AUC 1.8-fold (P < .001) and enhanced its blood glucose-lowering effect in vivo. Cyclosporine inhibited the CYP3A4-mediated (but not CYP2C8-mediated) metabolism of repaglinide in vitro and increased repaglinide AUC 2.4-fold in vivo (P < .001). The effect of cyclosporine on repaglinide AUC in vivo correlated with the SLCO1B1 (encoding organic anion transporting polypeptide 1, OATP1B1) genotype. Conclusions The relative contributions of CYP2C8 and CYP3A4 to the metabolism of repaglinide are similar in vitro, when therapeutic repaglinide concentrations are used. In vivo, repaglinide AUC was considerably increased by inhibition of both CYP2C8 (by trimethoprim) and CYP3A4 (by telithromycin). Cyclosporine raised repaglinide AUC even higher, probably by inhibiting the CYP3A4-mediated biotransformation and OATP1B1-mediated hepatic uptake of repaglinide. Bezafibrate, fenofibrate, montelukast, and pioglitazone had no effect on the pharmacokinetics of repaglinide, suggesting that they do not significantly inhibit CYP2C8 or CYP3A4 in vivo. Coadministration of drugs that inhibit CYP2C8, CYP3A4 or OATP1B1 may increase the plasma concentrations and blood glucose-lowering effect of repaglinide, requiring closer monitoring of blood glucose concentrations to avoid hypoglycaemia, and adjustment of repaglinide dosage as necessary.
Resumo:
Thrombophilia (TF) predisposes both to venous and arterial thrombosis at a young age. TF may also impact the thrombosis or stenosis of hemodialysis (HD) vascular access in patients with end-stage renal disease (ESRD). When involved in severe thrombosis TF may associate with inappropriate response to anticoagulation. Lepirudin, a potent direct thrombin inhibitor (DTI), indicated for heparin-induced thrombocytopenia-related thrombosis, could offer a treatment alternative in TF. Monitoring of narrow-ranged lepirudin demands new insights also in laboratory. The above issues constitute the targets in this thesis. We evaluated the prevalence of TF in patients with ESRD and its impact upon thrombosis- or stenosis-free survival of the vascular access. Altogether 237 ESRD patients were prospectively screened for TF and thrombogenic risk factors prior to HD access surgery in 2002-2004 (mean follow-up of 3.6 years). TF was evident in 43 (18%) of the ESRD patients, more often in males (23 vs. 9%, p=0.009). Known gene mutations of FV Leiden and FII G20210A occurred in 4%. Vascular access sufficiently matured in 226 (95%). The 1-year thrombosis- and stenosis-free access survival was 72%. Female gender (hazards ratio, HR, 2.5; 95% CI 1.6-3.9) and TF (HR 1.9, 95% CI 1.1-3.3) were independent risk factors for the shortened thrombosis- and stenosis-free survival. Additionally, TF or thrombogenic background was found in relatively young patients having severe thrombosis either in hepatic veins (Budd-Chiari syndrome, BCS, one patient) or inoperable critical limb ischemia (CLI, six patients). Lepirudin was evaluated in an off-label setting in the severe thrombosis after inefficacious traditional anticoagulation without other treatment options except severe invasive procedures, such as lower extremity amputation. Lepirudin treatments were repeatedly monitored clinically and with laboratory assessments (e.g. activated partial thromboplastin time, APTT). Our preliminary studies with lepirudin in thrombotic calamities appeared safe, and no bleeds occurred. An effective DTI lepirudin calmed thrombosis as all patients gradually recovered. Only one limb amputation was performed 3 years later during the follow-up (mean 4 years). Furthermore, we aimed to overcome the limitations of APTT and confounding effects of warfarin (INR of 1.5-3.9) and lupus anticoagulant (LA). Lepirudin responses were assessed in vitro by five specific laboratory methods. Ecarin chromogenic assay (ECA) or anti-Factor IIa (anti-FIIa) correlated precisely (r=0.99) with each other and with spiked lepirudin in all plasma pools: normal, warfarin, and LA-containing plasma. In contrast, in the presence of warfarin and LA both APTT and prothrombinase-induced clotting time (PiCT®) were limited by non-linear and imprecise dose responses. As a global coagulation test APTT is useful in parallel to the precise chromogenic methods ECA or Anti-FIIa in challenging clinical situations. Lepirudin treatment requires multidisciplinary approach to ensure appropriate patient selection, interpretation of laboratory monitoring, and treatment safety. TF seemed to be associated with complicated thrombotic events, in venous (BCS), arterial (CLI), and vascular access systems. TF screening should be aimed to patients with repeated access complications or prior unprovoked thromboembolic events. Lepirudin inhibits free and clot-bound thrombin which heparin fails to inhibit. Lepirudin seems to offer a potent and safe option for treatment of severe thrombosis. Multi-centered randomized trials are necessary to assess the possible management of complicated thrombotic events with DTIs like lepirudin and seek prevention options against access complications.