71 resultados para Rate respiratory - Thesis
Resumo:
Atherosclerosis is the main underlying pathology of coronary heart disease. Coronary heart disease is a serious health problem in Finland, and it is the leading cause of morbidity and mortality in industrialized countries. Psychological stress correlates with coronary heart disease events – myocardial infarction and sudden death, which are the most common clinical syndromes of atherosclerotic narrowing of arteries. The present series of studies examines the interaction between stress and endothelial function in relation to atherosclerosis. The study also aims to give new information on the mechanisms through which stress has its effect on atherosclerosis progression, focusing on possible relations between psychological stress and the functioning of the endothelium. Our project is based on data from one of the largest national epidemiological studies, the Cardiovascular Risk in Young Finns study, which has monitored the development of risk factors for coronary heart disease in 3596 young adults since 1980. The present study combines experimental stress research with epidemiology and uses an advanced method for examining atherosclerosis development in healthy subjects (intima-media thickness ultrasound measurement). The physiological parameters used were heart rate, respiratory sinus arrhythmia and pre-ejection period. Chronic stress was assessed by vital exhaustion. The ultrasound measurements that served as the indexes of preclinical atherosclerosis were carotid intima-media thickness, brachial flow-mediated dilatation and carotid artery compliance. The effects of cardiovascular risk factors found to be important were taken into account: serum cholesterols level, triglyceride level, serum insulin level and systolic and diastolic blood pressure. There were 69, 1596, 81 and 1721 participants in studies I-IV, respectively. The results showed that both chronic and acute stress may exert an effect on atherosclerosis in subjects with impaired endothelial responses. The findings are consistent with the idea that risk factors are more harmful if the endothelium is not working properly. Chronic stress was found to be a risk if it has resulted in ineffective cardiac stress reactivity or delayed recovery. Men were shown to be at increased risk for atherosclerotic progression in early life, which suggests men’s decreased stress coping ability in relation to stressful psychosocial coronary risk factors. Autonomic imbalance may be the common mechanism of the stress influence on atherosclerosis development. The results of the present study contain background information for the identification the first stages of atherosclerosis, and they may be useful for preventive medicine programs for young adults and could help to improve cardiovascular health in Finland as well as in other countries.
Resumo:
Research reveals that more than every fourth Finn experiences work-related exhaustion to some degree. Stress and exhaustion have psychological and physical expressions. The main physical factor in stress is the overloading of the autonomic nervous system, which can be measured for instance by variations of heart rate. Studies show that the work field, management and authority of the work, skill developmental possibilities, and social support inhibit stress overload. The practising of self-relaxation techniques possible inhibits working stress and exhaustion. In this study of preventive rehabilitation, the focus was on the effects of the training of applied relaxation on psychological and physiological variables of stress and empowerment of resources. Participants (n=73) were basically healthy and capable of working, 25-40 of age, workers from the field of mental work. They practised applied relaxation under group conduction for seven weeks. The aim was to learn to relax easily even in everyday occasions. The subjects were tested thirdly. After the first measurement, they were grouped into two groups, of which the first group started the relaxation training. The second group began practising half a year after the second measurement. The third measurement was done one year after the beginning of the study. It was hypothesised that the training of applied relaxation would significantly reduce stress on both psychological and physiological variables and that these variables would correlate positively. Results revealed that the training of applied relaxation reduced psychological stress symptoms rather modestly. The changes were more significant in women, who experienced a slight increase in self-directivity. Physical changes were slight decreases of the sympathetic activation. The correlations of psychological and physiological variables were modest. Some changes were reduced after the active training. There was a positive interrelation between experienced work-related demands of efficiency, insufficient social support and exhaustion. There was a tendency to significance between skill developmental possibilities and psychological stress symptoms. Further implications of the results were discussed.
Resumo:
The mitochondrion is an organelle of outmost importance, and the mitochondrial network performs an array of functions that go well beyond ATP synthesis. Defects in mitochondrial performance lead to diseases, often affecting nervous system and muscle. Although many of these mitochondrial diseases have been linked to defects in specific genes, the molecular mechanisms underlying the pathologies remain unclear. The work in this thesis aims to determine how defects in mitochondria are communicated within - and interpreted by - the cells, and how this contributes to disease phenotypes. Fumarate hydratase (FH) is an enzyme of the citrate cycle. Recessive defects in FH lead to infantile mitochondrial encephalopathies, while dominant mutations predispose to tumor formation. Defects in succinate dehydrogenase (SDH), the enzyme that precedes FH in the citrate cycle, have also been described. Mutations in SDH subunits SDHB, SDHC and SDHD are associated with tumor predisposition, while mutations in SDHA lead to a characteristic mitochondrial encephalopathy of childhood. Thus, the citrate cycle, via FH and SDH, seems to have essential roles in mitochondrial function, as well as in the regulation of processes such as cell proliferation, differentiation or death. Tumor predisposition is not a typical feature of mitochondrial energy deficiency diseases. However, defects in citrate cycle enzymes also affect mitochondrial energy metabolism. It is therefore necessary to distinguish what is specific for defects in citrate cycle, and thus possibly associated with the tumor phenotype, from the generic consequences of defects in mitochondrial aerobic metabolism. We used primary fibroblasts from patients with recessive FH defects to study the cellular consequences of FH-deficiency (FH-). Similarly to the tumors observed in FH- patients, these fibroblasts have very low FH activity. The use of primary cells has the advantage that they are diploid, in contrast with the aneuploid tumor cells, thereby enabling the study of the early consequences of FH- in diploid background, before tumorigenesis and aneuploidy. To distinguish the specific consequences of FH- from typical consequences of defects in mitochondrial aerobic metabolism, we used primary fibroblasts from patients with MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) and from patients with NARP (neuropathy, ataxia and retinitis pigmentosa). These diseases also affect mitochondrial aerobic metabolism but are not known to predispose to tumor formation. To study in vivo the systemic consequences of defects in mitochondrial aerobic metabolism, we used a transgenic mouse model of late-onset mitochondrial myopathy. The mouse contains a transgene with an in-frame duplication of a segment of Twinkle, the mitochondrial replicative helicase, whose defects underlie the human disease progressive external ophthalmoplegia. This mouse model replicates the phenotype in the patients, particularly neuronal degeneration, mitochondrial myopathy, and subtle decrease of respiratory chain activity associated with mtDNA deletions. Due to the accumulation of mtDNA deletions, the mouse was named deletor. We first studied the consequences of FH- and of respiratory chain defects for energy metabolism in primary fibroblasts. To further characterize the effects of FH- and respiratory chain malfunction in primary fibroblasts at transcriptional level, we used expression microarrays. In order to understand the in vivo consequences of respiratory chain defects in vivo, we also studied the transcriptional consequences of Twinkle defects in deletor mice skeletal muscle, cerebellum and hippocampus. Fumarate accumulated in the FH- homozygous cells, but not in the compound heterozygous lines. However, virtually all FH- lines lacked cytoplasmic FH. Induction of glycolysis was common to FH-, MELAS and NARP fibroblasts. In deletor muscle glycolysis seemed to be upregulated. This was in contrast with deletor cerebellum and hippocampus, where mitochondrial biogenesis was in progress. Despite sharing a glycolytic pattern in energy metabolism, FH- and respiratory chain defects led to opposite consequences in redox environment. FH- was associated with reduced redox environment, while MELAS and NARP displayed evidences of oxidative stress. The deletor cerebellum had transcriptional induction of antioxidant defenses, suggesting increased production of reactive oxygen species. Since the fibroblasts do not represent the tissues where the tumors appear in FH- patients, we compared the fibroblast array data with the data from FH- leiomyomas and normal myometrium. This allowed the determination of the pathways and networks affected by FH-deficiency in primary cells that are also relevant for myoma formation. A key pathway regulating smooth muscle differentiation, SRF (serum response factor)-FOS-JUNB, was found to be downregulated in FH- cells and in myomas. While in the deletor mouse many pathways were affected in a tissue-specific basis, like FGF21 induction in the deletor muscle, others were systemic, such as the downregulation of ALAS2-linked heme synthesis in all deletor tissues analyzed. However, interestingly, even a tissue-specific response of FGF21 excretion could elicit a global starvation response. The work presented in this thesis has contributed to a better understanding of mitochondrial stress signalling and of pathways interpreting and transducing it to human pathology.
Resumo:
In the first part of this thesis the association of different forms of sinonasal diseases and plasma concentrations of C3, C4, immunoglobulins, immunoglobulin G subclasses, C4A and C4B gene numbers were studied in 287 adult patients and 150 sex-matched adult controls. Patients were well characterized and stratified into groups using strict clinical criteria and females and males were also studied as separate groups. Severe primary antibody antibody deficiencies were rare in patients coming to sinonasal operations. Female patients had more recurrent sinusitis and other mucosal infections and males had more nasal polyposis. Upregulation of complement activity was seen in acute rhinosinusitis patients (high levels of plasma C3, C4, and complement classical pathway activity CH50) and male patients coming to sinonasal operations (high levels of plasma C3 and C4). In females, total and partial C4B deficiencies and lower levels of IgG1 and IgG3 were associated with rhinosinusitis leading to sinonasal operations. C4A deficiencies were found to predispose to severe chronic rhinosinusitis in females and males. In female patients with chronic or recurrent rhinosinusitis with nasal polyposis C4B deficiencies seem to predispose to the disease, but in males with a similar disease C4B deficiencies seem to be protective. This suggests a different pathophysiology between sexes in this form of sinonasal disease. In the second part of this thesis work 213 children coming to elective tonsillectomy were studied and compared with 155 randomly selected school children. An association with recurrent upper respiratory tract infections and hypersensitivity disorders was seen especially in children under 7 years of age. However, this association was not seen in levels of specific IgE to respiratory allergens in the same age group. Both symptomatic respiratory allergy and specific IgE to respiratory allergens became more common in boys than girls over 7 years of age. We were able to show that although both rhinoviruses and bacterial pathogens were found in the tonsils, no association between their presence and clinical forms of tonsillar disease was seen. The ability of GAS to bind complement regulators FH and C4BP did not differ between strains causing tonsillar diseases or septicemia, suggesting that other virulence mechanisms of the bacteria are more important.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
This licentiate's thesis analyzes the macroeconomic effects of fiscal policy in a small open economy under a flexible exchange rate regime, assuming that the government spends exclusively on domestically produced goods. The motivation for this research comes from the observation that the literature on the new open economy macroeconomics (NOEM) has focused almost exclusively on two-country global models and the analyses of the effects of fiscal policy on small economies are almost completely ignored. This thesis aims at filling in the gap in the NOEM literature and illustrates how the macroeconomic effects of fiscal policy in a small open economy depend on the specification of preferences. The research method is to present two theoretical model that are extensions to the model contained in the Appendix to Obstfeld and Rogoff (1995). The first model analyzes the macroeconomic effects of fiscal policy, making use of a model that exploits the idea of modelling private and government consumption as substitutes in private utility. The model offers intuitive predictions on how the effects of fiscal policy depend on the marginal rate of substitution between private and government consumption. The findings illustrate that the higher the substitutability between private and government consumption, (i) the bigger is the crowding out effect on private consumption (ii) and the smaller is the positive effect on output. The welfare analysis shows that the less fiscal policy decreases welfare the higher is the marginal rate of substitution between private and government consumption. The second model of this thesis studies how the macroeconomic effects of fiscal policy depend on the elasticity of substitution between traded and nontraded goods. This model reveals that this elasticity a key variable to explain the exchange rate, current account and output response to a permanent rise in government spending. Finally, the model demonstrates that temporary changes in government spending are an effective stabilization tool when used wisely and timely in response to undesired fluctuations in output. Undesired fluctuations in output can be perfectly offset by an opposite change in government spending without causing any side-effects.
Resumo:
Dispersal is a highly important life history trait. In fragmented landscapes the long-term persistence of populations depends on dispersal. Evolution of dispersal is affected by costs and benefits and these may differ between different landscapes. This results in differences in the strength and direction of natural selection on dispersal in fragmented landscapes. Dispersal has been shown to be a nonrandom process that is associated with traits such as flight ability in insects. This thesis examines genetic and physiological traits affecting dispersal in the Glanville fritillary butterfly (Melitaea cinxia). Flight metabolic rate is a repeatable trait representing flight ability. Unlike in many vertebrates, resting metabolic rate cannot be used as a surrogate of maximum metabolic rate as no strong correlation between the two was found in the Glanville fritillary. Resting and flight metabolic rate are affected by environmental variables, most notably temperature. However, only flight metabolic rate has a strong genetic component. Molecular variation in the much-studied candidate locus phosphoglucose isomerase (Pgi), which encodes the glycolytic enzyme PGI, has an effect on carbohydrate metabolism in flight. This effect is temperature dependent: in low to moderate temperatures individuals with the heterozygous genotype at the single nucleotide polymorphism (SNP) AA111 have higher flight metabolic rate than the common homozygous genotype. At high temperatures the situation is reversed. This finding suggests that variation in enzyme properties is indeed translated to organismal performance. High-resolution data on individual female Glanville fritillaries moving freely in the field were recorded using harmonic radar. There was a strong positive correlation between flight metabolic rate and dispersal rate. Flight metabolic rate explained one third of the observed variation in the one-hour movement distance. A fine-scaled analysis of mobility showed that mobility peaked at intermediate ambient temperatures but the two common Pgi genotypes differed in their reaction norms to temperature. As with flight metabolic rate, heterozygotes at SNP AA111 were the most active genotype in low to moderate temperatures. The results show that molecular variation is associated with variation in dispersal rate through the link of flight physiology under the influence of environmental conditions. The evolutionary pressures for dispersal differ between males and females. The effect of flight metabolic rate on dispersal was examined in both sexes in field and laboratory conditions. The relationship between flight metabolic rate and dispersal rate in the field and flight duration in the laboratory were found to differ between the two sexes. In females the relationship was positive, but in males the longest distances and flight durations were recorded for individuals with low flight metabolic rate. These findings may reflect male investment in mate locating. Instead of dispersing, males with high flight metabolic rate may establish territories and follow a perching strategy when locating females and hence move less on the landscape level. Males with low metabolic rate may be forced to disperse due to low competitive success or may show adaptations to an alternative strategy: patrolling. In the light of life history trade-offs and the rate of living theory having high metabolic rate may carry a cost in the form of shortened lifespan. Experiments relating flight metabolic rate to longevity showed a clear correlation in the opposite direction: high flight metabolic rate was associated with long lifespan. This suggests that individuals with high metabolic rate do not pay an extra physiological cost for their high flight capacity, rather there are positive correlations between different measures of fitness. These results highlight the importance of condition.
Resumo:
Mutation and recombination are the fundamental processes leading to genetic variation in natural populations. This variation forms the raw material for evolution through natural selection and drift. Therefore, studying mutation rates may reveal information about evolutionary histories as well as phylogenetic interrelationships of organisms. In this thesis two molecular tools, DNA barcoding and the molecular clock were examined. In the first part, the efficiency of mutations to delineate closely related species was tested and the implications for conservation practices were assessed. The second part investigated the proposition that a constant mutation rate exists within invertebrates, in form of a metabolic-rate dependent molecular clock, which can be applied to accurately date speciation events. DNA barcoding aspires to be an efficient technique to not only distinguish between species but also reveal population-level variation solely relying on mutations found on a short stretch of a single gene. In this thesis barcoding was applied to discriminate between Hylochares populations from Russian Karelia and new Hylochares findings from the greater Helsinki region in Finland. Although barcoding failed to delineate the two reproductively isolated groups, their distinct morphological features and differing life-history traits led to their classification as two closely related, although separate species. The lack of genetic differentiation appears to be due to a recent divergence event not yet reflected in the beetles molecular make-up. Thus, the Russian Hylochares was described as a new species. The Finnish species, previously considered as locally extinct, was recognized as endangered. Even if, due to their identical genetic make-up, the populations had been regarded as conspecific, conservation strategies based on prior knowledge from Russia would not have guaranteed the survival of the Finnish beetle. Therefore, new conservation actions based on detailed studies of the biology and life-history of the Finnish Hylochares were conducted to protect this endemic rarity in Finland. The idea behind the strict molecular clock is that mutation rates are constant over evolutionary time and may thus be used to infer species divergence dates. However, one of the most recent theories argues that a strict clock does not tick per unit of time but that it has a constant substitution rate per unit of mass-specific metabolic energy. Therefore, according to this hypothesis, molecular clocks have to be recalibrated taking body size and temperature into account. This thesis tested the temperature effect on mutation rates in equally sized invertebrates. For the first dataset (family Eucnemidae, Coleoptera) the phylogenetic interrelationships and evolutionary history of the genus Arrhipis had to be inferred before the influence of temperature on substitution rates could be studied. Further, a second, larger invertebrate dataset (family Syrphidae, Diptera) was employed. Several methodological approaches, a number of genes and multiple molecular clock models revealed that there was no consistent relationship between temperature and mutation rate for the taxa under study. Thus, the body size effect, observed in vertebrates but controversial for invertebrates, rather than temperature may be the underlying driving force behind the metabolic-rate dependent molecular clock. Therefore, the metabolic-rate dependent molecular clock does not hold for the here studied invertebrate groups. This thesis emphasizes that molecular techniques relying on mutation rates have to be applied with caution. Whereas they may work satisfactorily under certain conditions for specific taxa, they may fail for others. The molecular clock as well as DNA barcoding should incorporate all the information and data available to obtain comprehensive estimations of the existing biodiversity and its evolutionary history.
Resumo:
Objectives: To assess the prevalence and risk factor profiles of respiratory symptoms, asthma and chronic bronchitis in Helsinki, and to compare these results with those for Sweden and Estonia. Other important aims were to evaluate the prevalence and determinants of type 1 sensitization in Helsinki. Materials and methods: This presentation is a part of a large epidemiological study in Finland, Estonia and Sweden (FinEsS). The first part of the study consisted of a postal questionnaire in 1995-1996 distributed to subjects in eight study centres. The study population in each centre was a population-based random sample designed to be representative of the general population. The original study sample in Helsinki consisted of 8000 subjects aged 20-69 years, 6062 (76%) of whom participated. Comparisons between countries were based on a narrower age group, 20-64 years, since 64 years was the upper age limit used in the original study in Estonia. Thus, altogether 58 661 subjects aged 20-64 years were invited to participate in Finland, Sweden and Estonia, and 44 483 (76%) did so. The second part of the study was a clinical study with a structured interview, lung function measurements and skin-prick tests with 15 common allergens. This thesis reports only the results of the prick tests in Helsinki. Of the 1200 subjects invited to participate in Helsinki, 643 (54%) consented. Skin-prick tests were performed on subjects ≤ 60 years of age; thus, a total of 498 tests were done. Results: In Helsinki, the prevalence of physician-diagnosed asthma was 6.6% and of physician-diagnosed chronic bronchitis 3.7% among subjects aged 20-69 years. Comparison of the results between Finland, Sweden and Estonia in subjects 20-64 years of age revealed the highest prevalence of physician-diagnosed asthma in Sweden, 7.8%, while the prevalence in Finland was 5.9% and in Estonia 2.0% (p<0.001). The prevalence of physician-diagnosed asthma among those aged 20-29 years was 7.9% in Stockholm, 6.3% in Helsinki and 2.8% in Tallinn. Asthma-related symptoms were most common in Estonia, and among those with typical asthma symptoms the diagnosis of asthma was least likely in Estonia. Physician-diagnosed chronic bronchitis was reported to be 10.7% in Estonia, 3.1% in Sweden and 2.9% in Finland among subjects aged 20-64 years (p<0.001). Among those aged 20-29 years, 7.6% in Tallinn reported physician-diagnosed chronic bronchitis, while the prevalence estimates were 1.4% in Stockholm and 1.3% in Helsinki. The prevalence of smoking was similar for women in all three countries, around 30%, but large differences in smoking habits were present among men; 60% of Estonian, 39% of Finnish and 28% of Swedish men smoked. Skin-prick tests in Helsinki revealed a high prevalence of sensitization, 46.9%. For subjects aged 26-39 years, the prevalence was highest, 56.8%, and 23.7% were sensitized to at least four allergens. The most common sensitizing allergen was the dog. Sensitization to multiple allergens was associated with a high prevalence of asthma and allergic rhinitis. Conclusions: Compared with earlier Finnish studies, a higher prevalence of asthma and a lower prevalence of chronic bronchitis were found in Helsinki. The prevalence of physician-diagnosed chronic bronchitis was low in Helsinki, with only one-fifth of subjects fulfilling the symptom criteria for chronic bronchitis reporting having a diagnosis of chronic bronchitis. The prevalences of asthma and chronic bronchitis were similar in Finland and Sweden, but in Estonia physician-diagnosed asthma was less common and physician-diagnosed chronic bronchitis more common, particularly among young subjects. Further analyses revealed that the diagnosis of asthma was favoured in Finland and Sweden, while the diagnosis of chronic bronchitis was more likely in Estonia for subjects with the same symptoms. Allergic sensitization was common in Helsinki. Our findings of multiple sensitization also speak in favour of evaluating the degree of sensitization when assessing allergies.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
Objective: Patients with atopic dermatitis often have a poor long-term response to conventional topical or systemic treatments. Staphylococcal superinfections, skin atrophy due to corticosteroid use, and asthma and allergic rhinitis are common. Only a few, usually short-term, studies have addressed the effects of different treatments on these problems. Tacrolimus ointment is the first topical compound suitable for long-term treatment. The aim of this thesis was to evaluate the effects of long-term topical tacrolimus treatment on cutaneous staphylococcal colonization, collagen synthesis, and symptoms and signs of asthma and allergic rhinitis. Methods: Patients with moderate-to-severe atopic dermatitis were treated with intermittent 0.1% tacrolimus ointment in prospective, open studies lasting for 6 to 48 months. In Study I, cutaneous staphylococcal colonization was followed for 6 to 12 months. In Study II, skin thickness and collagen synthesis were followed by skin ultrasound and procollagen I and III propeptide concentrations of suction blister fluid samples for 12 to 24 months and compared with a group of corticosteroid-treated atopic dermatitis patients and with a group of healthy subjects. Study III was a cross-sectional study of the occurrence of respiratory symptoms, bronchial hyper-responsiveness, and sputum eosinophilia in atopic dermatitis patients and healthy controls. In Study V, the same parameters as in Study III were assessed in atopic dermatitis patients before and after 12 to 48 months of topical tacrolimus treatment. Study IV was a retrospective follow-up of the effect of tacrolimus 0.03% ointment on severe atopic blepharoconjunctivitis and conjunctival cytology. Results: The clinical response to topical tacrolimus was very good in all studies (p≤0.008). Staphylococcal colonization decreased significantly, and the effect was sustained throughout the study (p=0.01). Skin thickness (p<0.001) and markers of collagen synthesis (p<0.001) increased in the tacrolimus-treated patients significantly, whereas they decreased or remained unchanged in the corticosteroid-treated controls. Symptoms of asthma and allergic rhinitis (p<0.0001), bronchial hyper-responsiveness (p<0.0001), and sputum eosinophilia (p<0.0001) were significantly more common in patients with atopic dermatitis than in healthy controls, especially in subjects with positive skin prick tests or elevated serum immunoglobulin E. During topical tacrolimus treatment the asthma and rhinitis (p=0.005 and p=0.002) symptoms and bronchial hyper-responsiveness (p=0.02) decreased significantly, and serum immunoglobulin E and sputum eosinophils showed a decreasing trend in patients with the best treatment response. Treatment of atopic blepharoconjunctivitis resulted in a marked clinical response and a significant decrease in eosinophils, lymphocytes, and neutrophils in the conjunctival cytology samples. No significant adverse effects or increase in skin infections occurred in any study. Conclusions: The studies included in this thesis, except the study showing an increase in skin collagen synthesis in tacrolimus-treated patients, were uncontrolled, warranting certain reservations. The results suggest, however, that tacrolimus ointment has several beneficial effects in the long-term intermittent treatment of atopic dermatitis. Tacrolimus ointment efficiently suppresses the T cell-induced inflammation of atopic dermatitis. It has a normalizing effect on the function of the skin measured by the decrease in staphylococcal colonization. It does not cause skin atrophy as do corticosteroids but restores the skin collagen synthesis in patients who have used corticosteroids. Tacrolimus ointment has no marked systemic effect, as the absorption of the drug is minimal and decreases along with skin improvement. The effects on the airway: decrease in bronchial hyper-responsiveness and respiratory symptoms, can be speculated to be caused by the decrease in T cell trafficking from the skin to the respiratory tissues as the skin inflammation resolves, as well as inhibition of epicutaneous invasion of various antigens causing systemic sensitization when the skin barrier is disrupted as in atopic dermatitis. Patients with moderate-to-severe atopic dermatitis seem to benefit from efficient long-term treatment with topical tacrolimus.
Resumo:
Lipid analysis is commonly performed by gas chromatography (GC) in laboratory conditions. Spectroscopic techniques, however, are non-destructive and can be implemented noninvasively in vivo. Excess fat (triglycerides) in visceral adipose tissue and liver is known predispose to metabolic abnormalities, collectively known as the metabolic syndrome. Insulin resistance is the likely cause with diets high in saturated fat known to impair insulin sensitivity. Tissue triglyceride composition has been used as marker of dietary intake but it can also be influenced by tissue specific handling of fatty acids. Recent studies have shown that adipocyte insulin sensitivity correlates positively with their saturated fat content, contradicting the common view of dietary effects. A better understanding of factors affecting tissue triglyceride composition is needed to provide further insights into tissue function in lipid metabolism. In this thesis two spectroscopic techniques were developed for in vitro and in vivo analysis of tissue triglyceride composition. In vitro studies (Study I) used infrared spectroscopy (FTIR), a fast and cost effective analytical technique well suited for multivariate analysis. Infrared spectra are characterized by peak overlap leading to poorly resolved absorbances and limited analytical performance. In vivo studies (Studies II, III and IV) used proton magnetic resonance spectroscopy (1H-MRS), an established non-invasive clinical method for measuring metabolites in vivo. 1H-MRS has been limited in its ability to analyze triglyceride composition due to poorly resolved resonances. Using an attenuated total reflection accessory, we were able to obtain pure triglyceride infrared spectra from adipose tissue biopsies. Using multivariate curve resolution (MCR), we were able to resolve the overlapping double bond absorbances of monounsaturated fat and polyunsaturated fat. MCR also resolved the isolated trans double bond and conjugated linoleic acids from an overlapping background absorbance. Using oil phantoms to study the effects of different fatty acid compositions on the echo time behaviour of triglycerides, it was concluded that the use of long echo times improved peak separation with T2 weighting having a negligible impact. It was also discovered that the echo time behaviour of the methyl resonance of omega-3 fats differed from other fats due to characteristic J-coupling. This novel insight could be used to detect omega-3 fats in human adipose tissue in vivo at very long echo times (TE = 470 and 540 ms). A comparison of 1H-MRS of adipose tissue in vivo and GC of adipose tissue biopsies in humans showed that long TE spectra resulted in improved peak fitting and better correlations with GC data. The study also showed that calculation of fatty acid fractions from 1H-MRS data is unreliable and should not be used. Omega-3 fatty acid content derived from long TE in vivo spectra (TE = 540 ms) correlated with total omega-3 fatty acid concentration measured by GC. The long TE protocol used for adipose tissue studies was subsequently extended to the analysis of liver fat composition. Respiratory triggering and long TE resulted in spectra with the olefinic and tissue water resonances resolved. Conversion of the derived unsaturation to double bond content per fatty acid showed that the results were in accordance with previously published gas chromatography data on liver fat composition. In patients with metabolic syndrome, liver fat was found to be more saturated than subcutaneous or visceral adipose tissue. The higher saturation observed in liver fat may be a result of a higher rate of de-novo-lipogenesis in liver than in adipose tissue. This thesis has introduced the first non-invasive method for determining adipose tissue omega-3 fatty acid content in humans in vivo. The methods introduced here have also shown that liver fat is more saturated than adipose tissue fat.
Resumo:
In many countries, the prevalence of smoking and smokers average cigarette consumption have decreased, with occasional smoking and daily light smoking (1-4 cigarettes per day, CPD) becoming more common. Despite these changes in smoking patterns, the prevalence of chronic obstructive pulmonary disease (COPD), a disorder characterized by a progressive decline in lung function, continues to rise globally. Smoking is the most important factor causing COPD, however, not all smokers develop the disease. Genetic factors partly explain the inter-individual differences in lung function and susceptibility of some smokers to COPD. No earlier research on the genetic and environmental determinants of lung function or on the phenomenon of light smoking exists in the Finnish population. Further, the association between low-rate smoking patterns and COPD remains partly unknown. This thesis aimed to study the prevalence and consistency of light smoking longitudinally in the Finnish population, to assess the characteristics of light smokers, and to examine the risks of chronic bronchitis and COPD associated with changing smoking patterns over time. A further aim was to estimate longitudinally the proportions of genetic and environmental factors that explain the inter-individual variances in lung function. Data from the Older Finnish Twin Cohort, including same-sex twin pairs born in Finland before 1958, were used. Smoking patterns and chronic bronchitis symptoms were consistently assessed in surveys conducted in 1975, 1981, and 1990. National registry data on reimbursement eligibilities and medication purchases were used to define COPD. Lung function data were obtained from a subsample of the cohort, 217 female twin pairs, who attended spirometry in 2000 and 2003 as part of the Finnish Twin Study on Ageing. The genetic and environmental influences on lung function were estimated by using genetic modeling. This thesis found that light smokers are more often female, well-educated, and exhibit a healthier lifestyle than heavy smokers. At individual level, light smoking is rarely a constant pattern. Light smoking, reducing from heavier smoking to light smoking, and relapsing to light smoking after quitting, are among patterns associated with an increased risk of chronic bronchitis and COPD. Constant light smoking is associated with an increased use of inhaled anticholinergics, a medication for CODP. In addition to smoking, other environmental factors influence lung function in the older age. During a three-year follow-up, new environmental effects influencing spirometry values were observed, whereas the genes affecting lung function remained mostly the same. In conclusion, no safe level of daily smoking exists with regard to pulmonary diseases. Even daily light smoking in middle-age is associated with increased respiratory morbidity later in life. Smoking reduction does not decrease the risk of COPD, and should not be recommended as an alternative to quitting smoking. In elderly people, attention should also be drawn to other factors that can prevent poor lung function.
Resumo:
Solid materials can exist in different physical structures without a change in chemical composition. This phenomenon, known as polymorphism, has several implications on pharmaceutical development and manufacturing. Various solid forms of a drug can possess different physical and chemical properties, which may affect processing characteristics and stability, as well as the performance of a drug in the human body. Therefore, knowledge and control of the solid forms is fundamental to maintain safety and high quality of pharmaceuticals. During manufacture, harsh conditions can give rise to unexpected solid phase transformations and therefore change the behavior of the drug. Traditionally, pharmaceutical production has relied on time-consuming off-line analysis of production batches and finished products. This has led to poor understanding of processes and drug products. Therefore, new powerful methods that enable real time monitoring of pharmaceuticals during manufacturing processes are greatly needed. The aim of this thesis was to apply spectroscopic techniques to solid phase analysis within different stages of drug development and manufacturing, and thus, provide a molecular level insight into the behavior of active pharmaceutical ingredients (APIs) during processing. Applications to polymorph screening and different unit operations were developed and studied. A new approach to dissolution testing, which involves simultaneous measurement of drug concentration in the dissolution medium and in-situ solid phase analysis of the dissolving sample, was introduced and studied. Solid phase analysis was successfully performed during different stages, enabling a molecular level insight into the occurring phenomena. Near-infrared (NIR) spectroscopy was utilized in screening of polymorphs and processing-induced transformations (PITs). Polymorph screening was also studied with NIR and Raman spectroscopy in tandem. Quantitative solid phase analysis during fluidized bed drying was performed with in-line NIR and Raman spectroscopy and partial least squares (PLS) regression, and different dehydration mechanisms were studied using in-situ spectroscopy and partial least squares discriminant analysis (PLS-DA). In-situ solid phase analysis with Raman spectroscopy during dissolution testing enabled analysis of dissolution as a whole, and provided a scientific explanation for changes in the dissolution rate. It was concluded that the methods applied and studied provide better process understanding and knowledge of the drug products, and therefore, a way to achieve better quality.
Resumo:
Fluid bed granulation is a key pharmaceutical process which improves many of the powder properties for tablet compression. Dry mixing, wetting and drying phases are included in the fluid bed granulation process. Granules of high quality can be obtained by understanding and controlling the critical process parameters by timely measurements. Physical process measurements and particle size data of a fluid bed granulator that are analysed in an integrated manner are included in process analytical technologies (PAT). Recent regulatory guidelines strongly encourage the pharmaceutical industry to apply scientific and risk management approaches to the development of a product and its manufacturing process. The aim of this study was to utilise PAT tools to increase the process understanding of fluid bed granulation and drying. Inlet air humidity levels and granulation liquid feed affect powder moisture during fluid bed granulation. Moisture influences on many process, granule and tablet qualities. The approach in this thesis was to identify sources of variation that are mainly related to moisture. The aim was to determine correlations and relationships, and utilise the PAT and design space concepts for the fluid bed granulation and drying. Monitoring the material behaviour in a fluidised bed has traditionally relied on the observational ability and experience of an operator. There has been a lack of good criteria for characterising material behaviour during spraying and drying phases, even though the entire performance of a process and end product quality are dependent on it. The granules were produced in an instrumented bench-scale Glatt WSG5 fluid bed granulator. The effect of inlet air humidity and granulation liquid feed on the temperature measurements at different locations of a fluid bed granulator system were determined. This revealed dynamic changes in the measurements and enabled finding the most optimal sites for process control. The moisture originating from the granulation liquid and inlet air affected the temperature of the mass and pressure difference over granules. Moreover, the effects of inlet air humidity and granulation liquid feed rate on granule size were evaluated and compensatory techniques used to optimize particle size. Various end-point indication techniques of drying were compared. The ∆T method, which is based on thermodynamic principles, eliminated the effects of humidity variations and resulted in the most precise estimation of the drying end-point. The influence of fluidisation behaviour on drying end-point detection was determined. The feasibility of the ∆T method and thus the similarities of end-point moisture contents were found to be dependent on the variation in fluidisation between manufacturing batches. A novel parameter that describes behaviour of material in a fluid bed was developed. Flow rate of the process air and turbine fan speed were used to calculate this parameter and it was compared to the fluidisation behaviour and the particle size results. The design space process trajectories for smooth fluidisation based on the fluidisation parameters were determined. With this design space it is possible to avoid excessive fluidisation and improper fluidisation and bed collapse. Furthermore, various process phenomena and failure modes were observed with the in-line particle size analyser. Both rapid increase and a decrease in granule size could be monitored in a timely manner. The fluidisation parameter and the pressure difference over filters were also discovered to express particle size when the granules had been formed. The various physical parameters evaluated in this thesis give valuable information of fluid bed process performance and increase the process understanding.