78 resultados para Quasi-Bilateral Generating Function
Resumo:
The purpose of this study is to analyse the development and understanding of the idea of consensus in bilateral dialogues among Anglicans, Lutherans and Roman Catholics. The source material consists of representative dialogue documents from the international, regional and national dialogues from the 1960s until 2006. In general, the dialogue documents argue for agreement/consensus based on commonality or compatibility. Each of the three dialogue processes has specific characteristics and formulates its argument in a unique way. The Lutheran-Roman Catholic dialogue has a particular interest in hermeneutical questions. In the early phases, the documents endeavoured to describe the interpretative principles that would allow the churches to together proclaim the Gospel and to identify the foundation on which the agreement in the church is based. This investigation ended up proposing a notion of basic consensus , which later developed into a form of consensus that seeks to embrace, not to dismiss differences (so-called differentiated consensus ). The Lutheran-Roman Catholic agreement is based on a perspectival understanding of doctrine. The Anglican-Roman Catholic dialogue emphasises the correctness of interpretations. The documents consciously look towards a common future , not the separated past. The dialogue s primary interpretative concept is koinonia. The texts develop a hermeneutics of authoritative teaching that has been described as the rule of communion . The Anglican-Lutheran dialogue is characterised by an instrumental understanding of doctrine. Doctrinal agreement is facilitated by the ideas of coherence, continuity and substantial emphasis in doctrine. The Anglican-Lutheran dialogue proposes a form of sufficient consensus that considers a wide set of doctrinal statements and liturgical practices to determine whether an agreement has been reached to the degree that, although not complete , is sufficient for concrete steps towards unity. Chapter V discusses the current challenges of consensus as an ecumenically viable concept. In this part, I argue that the acceptability of consensus as an ecumenical goal is based not only the understanding of the church but more importantly on the understanding of the nature and function of the doctrine. The understanding of doctrine has undergone significant changes during the time of the ecumenical dialogues. The major shift has been from a modern paradigm towards a postmodern paradigm. I conclude with proposals towards a way to construct a form of consensus that would survive philosophical criticism, would be theologically valid and ecumenically acceptable.
Resumo:
This dissertation is a synchronic description of the phonology and grammar of two dialects of the Rajbanshi language (Eastern Indo-Aryan) as spoken in Jhapa, Nepal. I have primarily confined the analysis to the oral expression, since the emerging literary form is still in its infancy. The grammatical analysis is therefore based, for the most part, on a corpus of oral narrative text which was recorded and transcribed from three informants from north-east Jhapa. An informant, speaking a dialect from south-west Jhapa cross checked this text corpus and provided additional elicited material. I have described the phonology, morphology and syntax of the language, and also one aspect of its discourse structure. For the most part the phonology follows the basic Indo-Aryan pattern. Derivational morphology, compounding, reduplication, echo formation and onomatopoeic constructions are considered, as well as number, noun classes (their assignment and grammatical function), pronouns, and case and postpositions. In verbal morphology I cover causative stems, the copula, primary and secondary agreement, tense, aspect, mood, auxiliary constructions and non-finite forms. The term secondary agreement here refers to genitive agreement, dative-subject agreement and patient (and sometimes patient-agent) agreement. The breaking of default agreement rules has a range of pragmatic inferences. I argue that a distinction, based on formal, semantic and statistical grounds, should be made between conjunct verbs, derivational compound verbs and quasi-aspectual compound verbs. Rajbanshi has an open set of adjectives, and it additionally makes use of a restricted set of nouns which can function as adjectives. Various particles, and the emphatic and conjunctive clitics are also considered. The syntactic structures studied include: non-declarative speech acts, phrase-internal and clause-internal constituent order, negation, subordination, coordination and valence adjustment. I explain how the future, present and past tenses in Rajbanshi oral narratives do not seem to maintain a time reference, but rather to indicate a distinction between background and foreground information. I call this tense neutralisation .
Resumo:
Atherosclerosis is the main underlying pathology of coronary heart disease. Coronary heart disease is a serious health problem in Finland, and it is the leading cause of morbidity and mortality in industrialized countries. Psychological stress correlates with coronary heart disease events – myocardial infarction and sudden death, which are the most common clinical syndromes of atherosclerotic narrowing of arteries. The present series of studies examines the interaction between stress and endothelial function in relation to atherosclerosis. The study also aims to give new information on the mechanisms through which stress has its effect on atherosclerosis progression, focusing on possible relations between psychological stress and the functioning of the endothelium. Our project is based on data from one of the largest national epidemiological studies, the Cardiovascular Risk in Young Finns study, which has monitored the development of risk factors for coronary heart disease in 3596 young adults since 1980. The present study combines experimental stress research with epidemiology and uses an advanced method for examining atherosclerosis development in healthy subjects (intima-media thickness ultrasound measurement). The physiological parameters used were heart rate, respiratory sinus arrhythmia and pre-ejection period. Chronic stress was assessed by vital exhaustion. The ultrasound measurements that served as the indexes of preclinical atherosclerosis were carotid intima-media thickness, brachial flow-mediated dilatation and carotid artery compliance. The effects of cardiovascular risk factors found to be important were taken into account: serum cholesterols level, triglyceride level, serum insulin level and systolic and diastolic blood pressure. There were 69, 1596, 81 and 1721 participants in studies I-IV, respectively. The results showed that both chronic and acute stress may exert an effect on atherosclerosis in subjects with impaired endothelial responses. The findings are consistent with the idea that risk factors are more harmful if the endothelium is not working properly. Chronic stress was found to be a risk if it has resulted in ineffective cardiac stress reactivity or delayed recovery. Men were shown to be at increased risk for atherosclerotic progression in early life, which suggests men’s decreased stress coping ability in relation to stressful psychosocial coronary risk factors. Autonomic imbalance may be the common mechanism of the stress influence on atherosclerosis development. The results of the present study contain background information for the identification the first stages of atherosclerosis, and they may be useful for preventive medicine programs for young adults and could help to improve cardiovascular health in Finland as well as in other countries.
Resumo:
In the present work, effects of stimulus repetition and change in a continuous stimulus stream on the processing of somatosensory information in the human brain were studied. Human scalp-recorded somatosensory event-related potentials (ERPs) and magnetoencephalographic (MEG) responses rapidly diminished with stimulus repetition when mechanical or electric stimuli were applied to fingers. On the contrary, when the ERPs and multi-unit a ctivity (MUA) were directly recorded from the primary (SI) and secondary (SII) somatosensory cortices in a monkey, there was no marked decrement in the somatosensory responses as a function of stimulus repetition. These results suggest that this rate effect is not due to the response diminution in the SI and SII cortices. Obviously the responses to the first stimulus after a long "silent" period are nhanced due to unspecific initial orientation, originating in more broadly distributed and/or deeper neural structures, perhaps in the prefrontal cortices. With fast repetition rates not only the late unspecific but also some early specific somatosensory ERPs were diminished in amplitude. The fast decrease of the ERPs as a function of stimulus repetition is mainly due to the disappearance of the orientation effect and with faster repetition rates additively due to stimulus specific refractoriness. A sudden infrequent change in the continuous stimulus stream also enhanced somatosensory MEG responses to electric stimuli applied to different fingers. These responses were quite similar to those elicited by the deviant stimuli alone when the frequent standard stimuli were omitted. This enhancement was obviously due to the release from refractoriness because the neural structures generating the responses to the infrequent deviants had more time to recover from the refractoriness than the respective structures for the standards. Infrequent deviant mechanical stimuli among frequent standard stimuli also enhanced somatosensory ERPs and, in addition, they elicited a new negative wave which did not occur in the deviants-alone condition. This extra negativity could be recorded to deviations in the stimulation site and in the frequency of the vibratory stimuli. This response is probably a somatosensory analogue of the auditory mismatch negativity (MMN) which has been suggested to reflect a neural mismatch process between the sensory input and the sensory memory trace.
Resumo:
Goals This study aims to map the effect of interrogative function on the intonation of spontaneous and read Finnish. Earlier research shows that the most prominent feature in Finnish question intonation is an appeal to the listener. Question word questions typically start with a high peak which is followed by falling intonation. In yes/no questions, F0 remains on a high level until the word carrying sentence stress and then falls. Final rises are mainly found in intonation clichés such as "Ai mitä?" ("What?") These earlier results are based on read speech and enacted dialogues. In this study, questions and statements found in spontaneous dialogues were compared. These utterances were also compared with read versions of the same utterances. Fundamental frequency values were compared using a mixed model. Contours were also grouped using auditory and visual inspection. Thus it was possible to compare frequencies of contour types according to utterance type and speech style. The position of questions in the F0 distribution of the whole material was also investigated in this study. Method The material consisted of four spontaneous dialogues and their read versions. The speakers were young adults from the Helsinki metropolitan area, four females and four males. The whole material was first divided into broad dialogue function categories arising from the material and F0 curves were calculated for each category. After this, 277 questions and 244 statements were selected for closer inspection. Values reflecting F0 distribution and contour shape were measured from the F0 contours of these utterances. A mixed model was used to analyse the differences. Utterance type, question type, speech style and speaker gender were used as fixed effects. The frequencies of F0 contour types were compared using a Chi square test. Additional material in this study came from eight young female speakers in central Finland. Results and conclusions In the mixed model analysis, significant differences were found both between questions and statements and between spontaneous and read speech. Generally, utterance type affected the variables reflecting contour type while speech style affected the variables reflecting F0 distribution. The effect of question type was not clearly visible. In read speech the contours resembled earlier results more closely. Speakers had different strategies in differentiating between questions and statements. In the whole material, F0 was slightly higher in questions than in statements. The effect of dialectal background could be seen in the contour types. The results show that interrogative function affects intonation in both spontaneous and read Finnish.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
Distinct endogenous network events, generated independently of sensory input, are a general feature of various structures of the immature central nervous system. In the immature hippocampus, these type of events are seen as "giant depolarizing potentials" (GDPs) in intracellular recordings in vitro. GABA, the major inhibitory neurotransmitter of the adult brain, has a depolarizing action in immature neurons, and GDPs have been proposed to be driven by GABAergic transmission. Moreover, GDPs have been thought to reflect an early pattern that disappears during development in parallel with the maturation of hyperpolarizing GABAergic inhibition. However, the adult hippocampus in vivo also generates endogenous network events known as sharp (positive) waves (SPWs), which reflect synchronous discharges of CA3 pyramidal neurons and are thought to be involved in cognitive functions. In this thesis, mechanisms of GDP generation were studied with intra- and extracellular recordings in the neonatal rat hippocampus in vitro and in vivo. Immature CA3 pyramidal neurons were found to generate intrinsic bursts of spikes and to act as cellular pacemakers for GDP activity whereas depolarizing GABAergic signalling was found to have a temporally non-patterned facilitatory role in the generation of the network events. Furthermore, the data indicate that the intrinsic bursts of neonatal CA3 pyramidal neurons and, consequently, GDPs are driven by a persistent Na+ current and terminated by a slow Ca2+-dependent K+ current. Gramicidin-perforated patch recordings showed that the depolarizing driving force for GABAA receptor-mediated actions is provided by Cl- uptake via the Na-K-C1 cotransporter, NKCC1, in the immature CA3 pyramids. A specific blocker of NKCC1, bumetanide, inhibited SPWs and GDPs in the neonatal rat hippocampus in vivo and in vitro, respectively. Finally, pharmacological blockade of the GABA transporter-1 prolonged the decay of the large GDP-associated GABA transients but not of single postsynaptic GABAA receptor-mediated currents. As a whole the data in this thesis indicate that the mechanism of GDP generation, based on the interconnected network of bursting CA3 pyramidal neurons, is similar to that involved in adult SPW activity. Hence, GDPs do not reflect a network pattern that disappears during development but they are the in vitro counterpart of neonatal SPWs.
Resumo:
Glaucoma is a multifactorial long-term ocular neuropathy associated with progressive loss of the visual field, retinal nerve fiber structural abnormalities and optic disc changes. Like arterial hypertension it is usually a symptomless disease, but if left untreated leads to visual disability and eventual blindness. All therapies currently used aim to lower intraocular pressure (IOP) in order to minimize cell death. Drugs with new mechanisms of action could protect glaucomatous eyes against blindness. Renin-angiotensin system (RAS) is known to regulate systemic blood pressure and compounds acting on it are in wide clinical use in the treatment of hypertension and heart failure but not yet in ophthalmological use. There are only few previous studies concerning intraocular RAS, though evidence is accumulating that drugs antagonizing RAS can also lower IOP, the only treatable risk factor in glaucoma. The main aim of this experimental study was to clarify the expression of the renin-angiotensin system in the eye tissues and to test its potential oculohypotensive effects and mechanisms. In addition, the possible relationship between the development of hypertension and IOP was evaluated in animal models. In conclusion, a novel angiotensin receptor type (Mas), as well as ACE2 enzyme- producing agonists for Mas, were described for the first time in the eye structures participating in the regulation of IOP. In addition, a Mas receptor agonist significantly reduced even normal IOP. The effect was abolished by a specific receptor antagonist. Intraocular, local RAS would thus to be involved in the regulation of IOP, probably even more in pathological conditions such as glaucoma though there was no unambiguous relationship between arterial and ocular hypertension. The findings suggest the potential as antiglaucomatous drugs of agents which increase ACE2 activity and the formation of angiotensin (1-7), or activate Mas receptors.
Resumo:
Increased consumption of low-fat milk products is inversely associated with the risk of hypertension. The beneficial effect of milk on blood pressure is attributed to high calcium and potassium content but also to specific peptide sequences, which are cleaved from milk protein during gastrointestinal digestion, fermentation of milk with proteolytic starter cultures or enzymatic hydrolysis. Milk products fermented with Lactobacillus helveticus contain casein-derived tripeptides isoleucine-proline-proline (Ile-Pro-Pro) and valine-proline-proline (Val-Pro-Pro), which have been shown to possess antihypertensive effects in humans and in experimental animals. The aim of the present series of studies was to investigate the effects of tripeptides Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them on vascular function and blood pressure and to elucidate the mechanisms behind them by using different experimental models of hypertension. Another aim was to characterize the acute effects of tripeptides on blood pressure and arterial stiffness in mildly hypertensive humans. Ile-Pro-Pro and Val-Pro-Pro or fermented milk products containing them attenuated the development of hypertension in two experimental models of hypertension, spontaneously hypertensive rat (SHR) and type 2 diabetic Goto-Kakizaki (GK) rat fed with high-salt diet. Significant differences in systolic blood pressure (SBP) were seen after 8 weeks treatment with tripeptide-containing products compared to control product. Plant sterols did not enhance this effect. Two differently produced tripeptide powders produced a similar attenuating effect on SBP in SHR. In mildly hypertensive subjects, a single administration of tripeptide- and plant sterol-containing fermented milk product decreased both SBP and diastolic blood pressure (DBP) over a period of 8 hours. Protective effect of tripeptides Ile-Pro-Pro and Val-Pro-Pro and fermented milk products containing them on vascular function was demonstrated in in vitro studies and long-term experimental studies. The effect was shown to be endothelium-dependent and possibly involving endothelium-derived hyperpolarizing factor (EDHF). In the clinical study, single administration of tripeptide-containing fermented milk product did not affect measures of arterial stiffness. Long-term treatment with fermented milk product containing Ile-Pro-Pro and Val-Pro-Pro inhibited angiotensin-converting enzyme (ACE) and decreased aldosterone levels thus showing beneficial effects on the renin-angiotensin system (RAS) in SHR and GK. No changes in the components of RAS were observed by the single administration of the same product in mildly hypertensive subjects. Increased levels of cGMP, NOx and citrulline suggest increased nitric oxide (NO) production by the tripeptides. Taken together, Ile-Pro-Pro and Val-Pro-Pro -containing products attenuate the development of hypertension after long-term treatment in experimental models of hypertension and possess an acute antihypertensive effect in mildly hypertensive subjects. In addition, these tripeptides show endothelium-mediated beneficial effects on vascular function. Attenuation of blood pressure increase by the tripeptides in experimental animals involves RAS, but its role in the antihypertensive effect in humans remains to be elucidated.
Resumo:
Understanding the process of cell division is crucial for modern cancer medicine due to the central role of uncontrolled cell division in this disease. Cancer involves unrestrained proliferation as a result of cells loosing normal control and being driven through the cell cycle, where they normally would be non-dividing or quiescent. Progression through the cell cycle is thought to be dependent on the sequential activation of cyclin-dependent kinases (Cdks). The full activation of Cdks requires the phosphorylation of a conserved residue (threonine-160 on human Cdk2) on the T-loop of the kinase domain. In metazoan species, a trimeric complex consisting of Cdk7, cyclin H and Mat1 has been suggested to be the T-loop kinase of several Cdks. In addition, Cdk7 have also been implicated in the regulation of transcription. Cdk7, cyclin H, and Mat1 can be found as subunits of general transcription factor TFIIH. Cdk7, in this context, phosphorylates the Carboxy-terminal domain (CTD) of the large subunit of RNA polymerase II (RNA pol II), specifically on serine-5 residues of the CTD repeat. The regulation of Cdk7 in these and other functions is not well known and the unambiguous characterization of the in vivo role of Cdk7 in both T-loop activation and CTD serine-5 phosphorylation has proved challenging. In this study, the fission yeast Cdk7-cyclin H homologous complex, Mcs6-Mcs2, is identified as the in vivo T-loop kinase of Cdk1(Cdc2). It also identifies multiple levels of regulation of Mcs6 kinase activity, i.e. association with Pmh1, a novel fission yeast protein that is the apparent homolog of metazoan Mat1, and T-loop phosphorylation of Mcs6, mediated by Csk1, a monomeric T-loop kinase with similarity to Cak1 of budding yeast. In addition, Skp1, a component of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase is identified by its interactions with Mcs2 and Pmh1. The Skp1 association with Mcs2 and Pmh1 is however SCF independent and does not involve proteolytic degradation but may reflect a novel mechanism to modulate the activity or complex assembly of Mcs6. In addition to Cdk7, also Cdk8 has been shown to have CTD serine-5 kinase activity in vitro. Cdk8 is not essential in yeast but has been shown to function as a transcriptional regulator. The function of Cdk8 is unknown in flies and mammals. This prompted the investigation of murine Cdk8 and its potential role as a redundant CTD serine-5 kinase. We find that Cdk8 is required for development prior to implantation, at a time that is co-incident with a burst of Cdk8 expression during normal development. The results does not support a role of Cdk8 as a serine-5 CTD kinase in vivo but rather shows an unexpected requirement for Cdk8, early in mammalian development. The results presented in this thesis extends our current knowledge of the regulation of the cell cycle by characterizing the function of two distinct cell cycle regulating T-loop kinases, including the unambiguous identification of Mcs6, the fission yeast Cdk7 homolog, as the T-loop kinase of Cdk1. The results also indicate that the function of Mcs6 is conserved from fission yeast to human Cdk7 and suggests novel mechanisms by which the distinct functions of Cdk7 and Mcs6 could be regulated. These findings are important for our understanding of how progression of the cell cycle and proper transcription is controlled, during normal development and tissue homeostasis but also under condition where cells have escaped these control mechanisms e.g. cancer.
Resumo:
The development of many embryonic organs is regulated by reciprocal and sequential epithelial-mesenchymal interactions. These interactions are mediated by conserved signaling pathways that are reiteratively used. Cleidocranial dysplasia (CCD) is a congenital syndrome where both bone and tooth development is affected. The syndrome is characterized by short stature, abnormal clavicles, general bone dysplasia, and supernumerary teeth. CCD is caused by mutations in RUNX2, a transcription factor that is a key regulator of osteoblast differentiation and bone formation. The first aim of this study was to analyse the expression of a family of key signal molecules, Bone morphogenetic protein (Bmp) at different stages of tooth development. Bmps have a variety of functions and they were originally discovered as signals inducing ectopic bone formation. We performed a comparative in situ hybridisation analysis of the mRNA expression of Bmp2-7 from initiation of tooth development to differentiation of dental hard tissues. The expression patterns indicated that the Bmps signal between the epithelial and mesenchymal tissues during initiation and morphogenesis of tooth development, as well as during the differentiation of odontoblasts and ameloblasts. Furthermore, they are also part of the signalling networks whereby the enamel knot regulates the patterning of tooth cusps. The second aim was to study the role of Runx2 during tooth development and thereby to gain better understanding of the pathogenesis of the tooth phenotype in CCD. We analysed the tooth phenotype of Runx2 knockout mice and examined the patterns and regulation of Runx2 gene expression.. The teeth of wild-type and Runx2 mutant mice were compared by several methods including in situ hybridisation, tissue culture, bead implantation experiments, and epithelial-mesenchymal recombination studies. Phenotypic analysis of Runx2 -/- mutant tooth development showed that teeth failed to advance beyond the bud stage. Runx2 expression was restricted to dental mesenchyme between the bud and early bell stages of tooth development and it was regulated by epithelial signals, in particular Fgfs. We searched for downstream targets of Runx2 by comparative in situ hybridisation analysis. The expression of Fgf3 was downregulated in the mesenchyme of Runx2 -/- teeth. Shh expression was absent from the enamel knot in the lower molars of Runx2 -/- and reduced in the upper molars. In conclusion, these studies showed that Runx2 regulates key epithelial-mesenchymal interactions that control advancing tooth morphogenesis and histodifferentiation of the epithelial enamel organ. In addition, in the upper molars of Runx2 mutants extra buddings occured at the palatal side of the tooth bud. We suggest that Runx2 acts as an inhibitor of successional tooth formation by preventing advancing development of the buds. Accordingly, we propose that RUNX2 haploinsuffiency in humans causes incomplete inhibition of successional tooth formation and as a result supernumerary teeth.