20 resultados para Asymptotic behaviour, Bayesian methods, Mixture models, Overfitting, Posterior concentration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of entering work life, young people s psychological resources and self-reported well-being were studied in a longitudinal setting from a life-span developmental-contextual perspective in early adulthood. The aim was to analyse how psychosocial characteristics in early childhood and adolescence predict successful entrance into work life, how this is associated with well-being, and to assess the level of psychological resources such as dispositional optimism, personal meaning of work and coping in early adulthood. The role of these and social support, in the relationship between regional factors (such as place of residence and migration), self-reported health and life satisfaction was studied. The association between a specific coping strategy, i.e. eating and drinking in a stressful situation and eating habits, was studied to demonstrate how coping is associated with health behaviour. Multivariate methods, including binary logistic regression analyses and ANOVA, were used for statistical analyses. The subjects were members of the Northern Finland 1966 Birth Cohort, which consists of all women and men born in 1966 in the two northernmost provinces of Finland (n= 12,058). The most recent follow-up, at the age of 31 years when 11,637 subjects were alive, took place in 1997-1998. The results show, first, that social resources in the childhood family and adolescence school achievement predict entrance into the labour market. Secondly, psychosocial resources were found to mediate the relationship between migration from rural to urban areas, and subjective well-being. Thirdly, psychological resources at entrance into the labour market were found to develop from early infancy on. They are, however, influenced later by work history. Fourthly, stress-related eating and drinking, as a way of coping, was found to be directly associated with unhealthy eating habits and alcohol use. Gender differences were found in psychosocial resources predicting, and being associated with success in entering the labour market. For men, the role of attitudinal and psychological factors seems to be especially important in entrance into work life and in the development of psychological resources. For women, academic attainment was more important for successfully entering work life, and lack of emotional social support was a risk factor for stress-related eating only among women. Stress-related eating and drinking habits were predicted by a long history of unemployment as well as a low level of education among both genders, but not excluding an academic degree among men. The results emphasize the role of childhood psychosocial factors in preventing long-term unemployment and in enhancing psychological well-being in early adulthood. Success in entering work life, in terms of continuous work history, plays a crucial role for well-being and the amount of psychological resources in early adulthood. The results emphasize the crucial role of enhancing psychological resources for promoting positive health behaviour and diminishing regional differences in subjective well-being.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many species inhabit fragmented landscapes, resulting either from anthropogenic or from natural processes. The ecological and evolutionary dynamics of spatially structured populations are affected by a complex interplay between endogenous and exogenous factors. The metapopulation approach, simplifying the landscape to a discrete set of patches of breeding habitat surrounded by unsuitable matrix, has become a widely applied paradigm for the study of species inhabiting highly fragmented landscapes. In this thesis, I focus on the construction of biologically realistic models and their parameterization with empirical data, with the general objective of understanding how the interactions between individuals and their spatially structured environment affect ecological and evolutionary processes in fragmented landscapes. I study two hierarchically structured model systems, which are the Glanville fritillary butterfly in the Åland Islands, and a system of two interacting aphid species in the Tvärminne archipelago, both being located in South-Western Finland. The interesting and challenging feature of both study systems is that the population dynamics occur over multiple spatial scales that are linked by various processes. My main emphasis is in the development of mathematical and statistical methodologies. For the Glanville fritillary case study, I first build a Bayesian framework for the estimation of death rates and capture probabilities from mark-recapture data, with the novelty of accounting for variation among individuals in capture probabilities and survival. I then characterize the dispersal phase of the butterflies by deriving a mathematical approximation of a diffusion-based movement model applied to a network of patches. I use the movement model as a building block to construct an individual-based evolutionary model for the Glanville fritillary butterfly metapopulation. I parameterize the evolutionary model using a pattern-oriented approach, and use it to study how the landscape structure affects the evolution of dispersal. For the aphid case study, I develop a Bayesian model of hierarchical multi-scale metapopulation dynamics, where the observed extinction and colonization rates are decomposed into intrinsic rates operating specifically at each spatial scale. In summary, I show how analytical approaches, hierarchical Bayesian methods and individual-based simulations can be used individually or in combination to tackle complex problems from many different viewpoints. In particular, hierarchical Bayesian methods provide a useful tool for decomposing ecological complexity into more tractable components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accelerator mass spectrometry (AMS) is an ultrasensitive technique for measuring the concentration of a single isotope. The electric and magnetic fields of an electrostatic accelerator system are used to filter out other isotopes from the ion beam. The high velocity means that molecules can be destroyed and removed from the measurement background. As a result, concentrations down to one atom in 10^16 atoms are measurable. This thesis describes the construction of the new AMS system in the Accelerator Laboratory of the University of Helsinki. The system is described in detail along with the relevant ion optics. System performance and some of the 14C measurements done with the system are described. In a second part of the thesis, a novel statistical model for the analysis of AMS data is presented. Bayesian methods are used in order to make the best use of the available information. In the new model, instrumental drift is modelled with a continuous first-order autoregressive process. This enables rigorous normalization to standards measured at different times. The Poisson statistical nature of a 14C measurement is also taken into account properly, so that uncertainty estimates are much more stable. It is shown that, overall, the new model improves both the accuracy and the precision of AMS measurements. In particular, the results can be improved for samples with very low 14C concentrations or measured only a few times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective was to measure productivity growth and its components in Finnish agriculture, especially in dairy farming. The objective was also to compare different methods and models - both parametric (stochastic frontier analysis) and non-parametric (data envelopment analysis) - in estimating the components of productivity growth and the sensitivity of results with respect to different approaches. The parametric approach was also applied in the investigation of various aspects of heterogeneity. A common feature of the first three of five articles is that they concentrate empirically on technical change, technical efficiency change and the scale effect, mainly on the basis of the decompositions of Malmquist productivity index. The last two articles explore an intermediate route between the Fisher and Malmquist productivity indices and develop a detailed but meaningful decomposition for the Fisher index, including also empirical applications. Distance functions play a central role in the decomposition of Malmquist and Fisher productivity indices. Three panel data sets from 1990s have been applied in the study. The common feature of all data used is that they cover the periods before and after Finnish EU accession. Another common feature is that the analysis mainly concentrates on dairy farms or their roughage production systems. Productivity growth on Finnish dairy farms was relatively slow in the 1990s: approximately one percent per year, independent of the method used. Despite considerable annual variation, productivity growth seems to have accelerated towards the end of the period. There was a slowdown in the mid-1990s at the time of EU accession. No clear immediate effects of EU accession with respect to technical efficiency could be observed. Technical change has been the main contributor to productivity growth on dairy farms. However, average technical efficiency often showed a declining trend, meaning that the deviations from the best practice frontier are increasing over time. This suggests different paths of adjustment at the farm level. However, different methods to some extent provide different results, especially for the sub-components of productivity growth. In most analyses on dairy farms the scale effect on productivity growth was minor. A positive scale effect would be important for improving the competitiveness of Finnish agriculture through increasing farm size. This small effect may also be related to the structure of agriculture and to the allocation of investments to specific groups of farms during the research period. The result may also indicate that the utilization of scale economies faces special constraints in Finnish conditions. However, the analysis of a sample of all types of farms suggested a more considerable scale effect than the analysis on dairy farms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genetics, the science of heredity and variation in living organisms, has a central role in medicine, in breeding crops and livestock, and in studying fundamental topics of biological sciences such as evolution and cell functioning. Currently the field of genetics is under a rapid development because of the recent advances in technologies by which molecular data can be obtained from living organisms. In order that most information from such data can be extracted, the analyses need to be carried out using statistical models that are tailored to take account of the particular genetic processes. In this thesis we formulate and analyze Bayesian models for genetic marker data of contemporary individuals. The major focus is on the modeling of the unobserved recent ancestry of the sampled individuals (say, for tens of generations or so), which is carried out by using explicit probabilistic reconstructions of the pedigree structures accompanied by the gene flows at the marker loci. For such a recent history, the recombination process is the major genetic force that shapes the genomes of the individuals, and it is included in the model by assuming that the recombination fractions between the adjacent markers are known. The posterior distribution of the unobserved history of the individuals is studied conditionally on the observed marker data by using a Markov chain Monte Carlo algorithm (MCMC). The example analyses consider estimation of the population structure, relatedness structure (both at the level of whole genomes as well as at each marker separately), and haplotype configurations. For situations where the pedigree structure is partially known, an algorithm to create an initial state for the MCMC algorithm is given. Furthermore, the thesis includes an extension of the model for the recent genetic history to situations where also a quantitative phenotype has been measured from the contemporary individuals. In that case the goal is to identify positions on the genome that affect the observed phenotypic values. This task is carried out within the Bayesian framework, where the number and the relative effects of the quantitative trait loci are treated as random variables whose posterior distribution is studied conditionally on the observed genetic and phenotypic data. In addition, the thesis contains an extension of a widely-used haplotyping method, the PHASE algorithm, to settings where genetic material from several individuals has been pooled together, and the allele frequencies of each pool are determined in a single genotyping.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern-day weather forecasting is highly dependent on Numerical Weather Prediction (NWP) models as the main data source. The evolving state of the atmosphere with time can be numerically predicted by solving a set of hydrodynamic equations, if the initial state is known. However, such a modelling approach always contains approximations that by and large depend on the purpose of use and resolution of the models. Present-day NWP systems operate with horizontal model resolutions in the range from about 40 km to 10 km. Recently, the aim has been to reach operationally to scales of 1 4 km. This requires less approximations in the model equations, more complex treatment of physical processes and, furthermore, more computing power. This thesis concentrates on the physical parameterization methods used in high-resolution NWP models. The main emphasis is on the validation of the grid-size-dependent convection parameterization in the High Resolution Limited Area Model (HIRLAM) and on a comprehensive intercomparison of radiative-flux parameterizations. In addition, the problems related to wind prediction near the coastline are addressed with high-resolution meso-scale models. The grid-size-dependent convection parameterization is clearly beneficial for NWP models operating with a dense grid. Results show that the current convection scheme in HIRLAM is still applicable down to a 5.6 km grid size. However, with further improved model resolution, the tendency of the model to overestimate strong precipitation intensities increases in all the experiment runs. For the clear-sky longwave radiation parameterization, schemes used in NWP-models provide much better results in comparison with simple empirical schemes. On the other hand, for the shortwave part of the spectrum, the empirical schemes are more competitive for producing fairly accurate surface fluxes. Overall, even the complex radiation parameterization schemes used in NWP-models seem to be slightly too transparent for both long- and shortwave radiation in clear-sky conditions. For cloudy conditions, simple cloud correction functions are tested. In case of longwave radiation, the empirical cloud correction methods provide rather accurate results, whereas for shortwave radiation the benefit is only marginal. Idealised high-resolution two-dimensional meso-scale model experiments suggest that the reason for the observed formation of the afternoon low level jet (LLJ) over the Gulf of Finland is an inertial oscillation mechanism, when the large-scale flow is from the south-east or west directions. The LLJ is further enhanced by the sea-breeze circulation. A three-dimensional HIRLAM experiment, with a 7.7 km grid size, is able to generate a similar LLJ flow structure as suggested by the 2D-experiments and observations. It is also pointed out that improved model resolution does not necessary lead to better wind forecasts in the statistical sense. In nested systems, the quality of the large-scale host model is really important, especially if the inner meso-scale model domain is small.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis report attempts to improve the models for predicting forest stand structure for practical use, e.g. forest management planning (FMP) purposes in Finland. Comparisons were made between Weibull and Johnson s SB distribution and alternative regression estimation methods. Data used for preliminary studies was local but the final models were based on representative data. Models were validated mainly in terms of bias and RMSE in the main stand characteristics (e.g. volume) using independent data. The bivariate SBB distribution model was used to mimic realistic variations in tree dimensions by including within-diameter-class height variation. Using the traditional method, diameter distribution with the expected height resulted in reduced height variation, whereas the alternative bivariate method utilized the error-term of the height model. The lack of models for FMP was covered to some extent by the models for peatland and juvenile stands. The validation of these models showed that the more sophisticated regression estimation methods provided slightly improved accuracy. A flexible prediction and application for stand structure consisted of seemingly unrelated regression models for eight stand characteristics, the parameters of three optional distributions and Näslund s height curve. The cross-model covariance structure was used for linear prediction application, in which the expected values of the models were calibrated with the known stand characteristics. This provided a framework to validate the optional distributions and the optional set of stand characteristics. Height distribution is recommended for the earliest state of stands because of its continuous feature. From the mean height of about 4 m, Weibull dbh-frequency distribution is recommended in young stands if the input variables consist of arithmetic stand characteristics. In advanced stands, basal area-dbh distribution models are recommended. Näslund s height curve proved useful. Some efficient transformations of stand characteristics are introduced, e.g. the shape index, which combined the basal area, the stem number and the median diameter. Shape index enabled SB model for peatland stands to detect large variation in stand densities. This model also demonstrated reasonable behaviour for stands in mineral soils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Water-ethanol mixtures are commonly used in industry and house holds. However, quite surprisingly their molecular-level structure is still not completely understood. In particular, there is evidence that the local intermolecular geometries depend significantly on the concentration. The aim of this study was to gain information on the molecular-level structures of water-ethanol mixtures by two computational methods. The methods are classical molecular dynamics (MD), where the movement of molecules can be studied, and x-ray Compton scattering, in which the scattering cross section is sensitive to the electron momentum density. Firstly, the water-ethanol mixtures were studied with MD simulations, with the mixture concentration ranging from 0 to 100%. For the simulations well-established force fields were used for the water and ethanol molecules (TIP4P and OPLS-AA, respectively). Moreover, two models were used for ethanol, rigid and non-rigid. In the rigid model the intramolecular bond lengths are fixed, whereas in the non-rigid model the lengths are determined by harmonic potentials. Secondly, mixtures with three different concentrations employing both ethanol models were studied by calculating the experimentally observable x-ray quantity, the Compton profile. In the MD simulations a slight underestimation in the density was observed as compared to experiment. Furthermore, a positive excess of hydrogen bonding with water molecules and a negative one with ethanol was quantified. Also, the mixture was found more structured when the ethanol concentration was higher. Negligible differences in the results were found between the two ethanol models. In contrast, in the Compton scattering results a notable difference between the ethanol models was observed. For the rigid model the Compton profiles were similar for all the concentrations, but for the non-rigid model they were distinct. This leads to two possibilities of how the mixing occurs. Either the mixing is similar in all concentrations (as suggested by the rigid model) or the mixing changes for different concentrations (as suggested by the non-rigid model). Either way, this study shows that the choice of the force field is essential in the microscopic structure formation in the MD simulations. When the sources of uncertainty in the calculated Compton profiles were analyzed, it was found that more statistics needs to be collected to reduce the statistical uncertainty in the final results. The obtained Compton scattering results can be considered somewhat preliminary, but clearly indicative of the behaviour of the water-ethanol mixtures when the force field is modified. The next step is to collect more statistics and compare the results with experimental data to decide which ethanol model describes the mixture better. This way, valuable information on the microscopic structure of water-ethanol mixtures can be found. In addition, information on the force fields in the MD simulations and on the ability of the MD simulations to reproduce the microscopic structure of binary liquids is obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microarrays are high throughput biological assays that allow the screening of thousands of genes for their expression. The main idea behind microarrays is to compute for each gene a unique signal that is directly proportional to the quantity of mRNA that was hybridized on the chip. A large number of steps and errors associated with each step make the generated expression signal noisy. As a result, microarray data need to be carefully pre-processed before their analysis can be assumed to lead to reliable and biologically relevant conclusions. This thesis focuses on developing methods for improving gene signal and further utilizing this improved signal for higher level analysis. To achieve this, first, approaches for designing microarray experiments using various optimality criteria, considering both biological and technical replicates, are described. A carefully designed experiment leads to signal with low noise, as the effect of unwanted variations is minimized and the precision of the estimates of the parameters of interest are maximized. Second, a system for improving the gene signal by using three scans at varying scanner sensitivities is developed. A novel Bayesian latent intensity model is then applied on these three sets of expression values, corresponding to the three scans, to estimate the suitably calibrated true signal of genes. Third, a novel image segmentation approach that segregates the fluorescent signal from the undesired noise is developed using an additional dye, SYBR green RNA II. This technique helped in identifying signal only with respect to the hybridized DNA, and signal corresponding to dust, scratch, spilling of dye, and other noises, are avoided. Fourth, an integrated statistical model is developed, where signal correction, systematic array effects, dye effects, and differential expression, are modelled jointly as opposed to a sequential application of several methods of analysis. The methods described in here have been tested only for cDNA microarrays, but can also, with some modifications, be applied to other high-throughput technologies. Keywords: High-throughput technology, microarray, cDNA, multiple scans, Bayesian hierarchical models, image analysis, experimental design, MCMC, WinBUGS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Elucidating the mechanisms responsible for the patterns of species abundance, diversity, and distribution within and across ecological systems is a fundamental research focus in ecology. Species abundance patterns are shaped in a convoluted way by interplays between inter-/intra-specific interactions, environmental forcing, demographic stochasticity, and dispersal. Comprehensive models and suitable inferential and computational tools for teasing out these different factors are quite limited, even though such tools are critically needed to guide the implementation of management and conservation strategies, the efficacy of which rests on a realistic evaluation of the underlying mechanisms. This is even more so in the prevailing context of concerns over climate change progress and its potential impacts on ecosystems. This thesis utilized the flexible hierarchical Bayesian modelling framework in combination with the computer intensive methods known as Markov chain Monte Carlo, to develop methodologies for identifying and evaluating the factors that control the structure and dynamics of ecological communities. These methodologies were used to analyze data from a range of taxa: macro-moths (Lepidoptera), fish, crustaceans, birds, and rodents. Environmental stochasticity emerged as the most important driver of community dynamics, followed by density dependent regulation; the influence of inter-specific interactions on community-level variances was broadly minor. This thesis contributes to the understanding of the mechanisms underlying the structure and dynamics of ecological communities, by showing directly that environmental fluctuations rather than inter-specific competition dominate the dynamics of several systems. This finding emphasizes the need to better understand how species are affected by the environment and acknowledge species differences in their responses to environmental heterogeneity, if we are to effectively model and predict their dynamics (e.g. for management and conservation purposes). The thesis also proposes a model-based approach to integrating the niche and neutral perspectives on community structure and dynamics, making it possible for the relative importance of each category of factors to be evaluated in light of field data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacteria play an important role in many ecological systems. The molecular characterization of bacteria using either cultivation-dependent or cultivation-independent methods reveals the large scale of bacterial diversity in natural communities, and the vastness of subpopulations within a species or genus. Understanding how bacterial diversity varies across different environments and also within populations should provide insights into many important questions of bacterial evolution and population dynamics. This thesis presents novel statistical methods for analyzing bacterial diversity using widely employed molecular fingerprinting techniques. The first objective of this thesis was to develop Bayesian clustering models to identify bacterial population structures. Bacterial isolates were identified using multilous sequence typing (MLST), and Bayesian clustering models were used to explore the evolutionary relationships among isolates. Our method involves the inference of genetic population structures via an unsupervised clustering framework where the dependence between loci is represented using graphical models. The population dynamics that generate such a population stratification were investigated using a stochastic model, in which homologous recombination between subpopulations can be quantified within a gene flow network. The second part of the thesis focuses on cluster analysis of community compositional data produced by two different cultivation-independent analyses: terminal restriction fragment length polymorphism (T-RFLP) analysis, and fatty acid methyl ester (FAME) analysis. The cluster analysis aims to group bacterial communities that are similar in composition, which is an important step for understanding the overall influences of environmental and ecological perturbations on bacterial diversity. A common feature of T-RFLP and FAME data is zero-inflation, which indicates that the observation of a zero value is much more frequent than would be expected, for example, from a Poisson distribution in the discrete case, or a Gaussian distribution in the continuous case. We provided two strategies for modeling zero-inflation in the clustering framework, which were validated by both synthetic and empirical complex data sets. We show in the thesis that our model that takes into account dependencies between loci in MLST data can produce better clustering results than those methods which assume independent loci. Furthermore, computer algorithms that are efficient in analyzing large scale data were adopted for meeting the increasing computational need. Our method that detects homologous recombination in subpopulations may provide a theoretical criterion for defining bacterial species. The clustering of bacterial community data include T-RFLP and FAME provides an initial effort for discovering the evolutionary dynamics that structure and maintain bacterial diversity in the natural environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis addresses modeling of financial time series, especially stock market returns and daily price ranges. Modeling data of this kind can be approached with so-called multiplicative error models (MEM). These models nest several well known time series models such as GARCH, ACD and CARR models. They are able to capture many well established features of financial time series including volatility clustering and leptokurtosis. In contrast to these phenomena, different kinds of asymmetries have received relatively little attention in the existing literature. In this thesis asymmetries arise from various sources. They are observed in both conditional and unconditional distributions, for variables with non-negative values and for variables that have values on the real line. In the multivariate context asymmetries can be observed in the marginal distributions as well as in the relationships of the variables modeled. New methods for all these cases are proposed. Chapter 2 considers GARCH models and modeling of returns of two stock market indices. The chapter introduces the so-called generalized hyperbolic (GH) GARCH model to account for asymmetries in both conditional and unconditional distribution. In particular, two special cases of the GARCH-GH model which describe the data most accurately are proposed. They are found to improve the fit of the model when compared to symmetric GARCH models. The advantages of accounting for asymmetries are also observed through Value-at-Risk applications. Both theoretical and empirical contributions are provided in Chapter 3 of the thesis. In this chapter the so-called mixture conditional autoregressive range (MCARR) model is introduced, examined and applied to daily price ranges of the Hang Seng Index. The conditions for the strict and weak stationarity of the model as well as an expression for the autocorrelation function are obtained by writing the MCARR model as a first order autoregressive process with random coefficients. The chapter also introduces inverse gamma (IG) distribution to CARR models. The advantages of CARR-IG and MCARR-IG specifications over conventional CARR models are found in the empirical application both in- and out-of-sample. Chapter 4 discusses the simultaneous modeling of absolute returns and daily price ranges. In this part of the thesis a vector multiplicative error model (VMEM) with asymmetric Gumbel copula is found to provide substantial benefits over the existing VMEM models based on elliptical copulas. The proposed specification is able to capture the highly asymmetric dependence of the modeled variables thereby improving the performance of the model considerably. The economic significance of the results obtained is established when the information content of the volatility forecasts derived is examined.