61 resultados para urchin-like structures
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Newfound attention has been given to solute transport in nanochannels. Because the electric double layer (EDL) thickness is comparable to characteristic channel dimensions, nanochannels have been used to separate ionic species with a constant charge-to-size ratio (i.e., electrophoretic mobility) that otherwise cannot be separated in electroosmotic or pressure- driven flow along microchannels. In nanochannels, the electrical fields within the EDL cause transverse ion distributions and thus yield charge-dependent mean ion speeds in the flow. Surface roughness is usually inevitable during microfabrication of microchannels or nanochannels. Surface roughness is usually inevitable during the fabrication of nanochannels. In the present study, we develop a numerical model to investigate the transport of charged solutes in nanochannels with hundreds of roughness-like structures. The model is based on continuum theory that couples Navier-Stokes equations for flows, Poisson-Boltzmann equation for electrical fields, and Nernst-Planck equation for solute transports. Different operating conditions are considered and the solute transport patterns in rough channels are compared with those in smooth channels. Results indicate that solutes move slower in rough nanochannels than in smooth ones for both pressure- driven and electroosmotic flows. Moreover, solute separation can be significantly improved by surface roughness under certain circumstances.
Resumo:
ZnO vertical well-aligned nanorods were grown on A1N/sapphire by using metal-organic chemical vapor deposition. We first observed the ZnO net-like structures under the nanorods. The different strain was determined in these two layers by using double crystal X-ray diffraction, Raman spectra, which revealed that the nanorods were relaxed and the net-like structures were strained. The optical properties of two layers were measured by using the cathodoluminescence and photo luminescence and the shift of UV peaks was observed. Moreover, the growth mechanism of the ZnO nanorods and the net-like structures is discussed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report a facile and environmentally friendly strategy for high-yield synthesis of highly monodisperse gold nanoparticles with urchin-like shape. A simple protein, gelatin, was first used for the control over shape and orientation of the gold nanoparticles. These nanoparticles, ready to use for biological systems, are promising in the optical imaging-based disease diagnostics and therapy because of their tunable surface plasmon resonance (SPR) and excellent surface-enhanced Raman scattering (SERS) activity.
Resumo:
MnSb films were deposited on porous silicon substrates by physical vapor deposition (PVD) technique. Modulation effects due to the substrate on microstructure and magnetic properties of the MnSb film's were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of hysteresis loops. SEM images of the MnSb films indicate that net-like structures were obtained because of the special morphology of the substrates. The net-like MnSb films exhibit some novel magnetic properties different from the unpatterned referenced samples. For example, in the case of net-like morphology, the coercive field is as low as 60 Oe.
Resumo:
Current-voltage (I-V) characteristics of GaAs-based resonant tunneling diodes have been investigated in the presence of a perpendicular magnetic field. Electron resonant tunneling is strongly suppressed by the applied magnetic field, leading to peak current decreasing with increasing magnetic field. The observed plateau-like structures appear in negative differential resistance region on the I-V curves and are magnetic-field dependent. The plateau-like structures are due to the coupling between the energy levels in the emitter well and in the main quantum well. (C) 2004 American Institute of Physics.
Resumo:
MnSb films were deposited on porous silicon substrates by physical vapor deposition (PVD) technique. Modulation effects due to the substrate on microstructure and magnetic properties of the MnSb film's were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and measurements of hysteresis loops. SEM images of the MnSb films indicate that net-like structures were obtained because of the special morphology of the substrates. The net-like MnSb films exhibit some novel magnetic properties different from the unpatterned referenced samples. For example, in the case of net-like morphology, the coercive field is as low as 60 Oe. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size tendency. The apical elongation of the spicule proceeds by piling up cone-like structural units formed from silica. As a support of the assumption that in the extracellular space silicatein(-like) molecules exist that associate with the external surface of the respective spicule immunogold electron microscopic analyses were performed. With the primmorph system from Suberites domuncula we show that silicatein(-like) molecules assemble as string- and net-like arrangements around the spicules. At their tips the silicatein(-like) molecules are initially stacked and at a later stay also organized into net-like structures. Silicatein(-like) molecules have been extracted from the giant basal spicule of Monorhaphis. Applying the SDS-PAGE technique it could be shown that silicatein molecules associate to dimers and trimers. Higher complexes (filaments) are formed from silicatein(-like) molecules, as can be visualized by electron microscopy (SEM). In the presence of ortho-silicate these filaments become covered with 30-60 nm long small rod-like/cuboid particles of silica. From these data we conclude that the apical elongation of the spicules of Monorhaphis proceeds by piling up cone-like silica structural units, whose synthesis is mediated by silicatein(-like) molecules. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The pattern selection of one-dimensional coupled map lattices is studied in this paper. It is shown by spatiotemporal variable separation that there exists a threshold wavelength in pattern selection which possesses wave-like structures in space and periodic chaotic motion in time.
Resumo:
The freshwater testate amoeba Difflugia tuberspinifera Hu et al. 1997 collected from pond and lake in China, is investigated by light and scanning electron microscopy. This little known taxon is redescribed and its morphology, biometry and ecology are supplied. After carefully comparison with other six similar species including Difflugia bartosi Stepanek, D. corona Wallich, D. corona cashi Deflandre, D. corona tuberculata Vucetich, D. muriformis Gauthier-Lievre et Thomas and Netzelia tuberculata (Wallich) Netzal we believe that the sub-spherical to spherical shell, the mulberry-shaped appearance, the 7-10 apertural tooth-like structures, the short collar and the conical spines numbering from 4 to 8 at the upper equatorial region in D. tuberspinifera set it apart from other species. Besides, statistical analysis indicates that D. tuberspinifera is a size-monomorphic species characterized by a main-size class and a small size range and the shell height is significant correlated with other morphometric characters at p < 0.05 excepting the number of aperture tooth-like structures and the number of spines. Moreover, D. tuberspinifera inhabits not only lotic but also lentic environment.
Resumo:
The influences of a high-temperature (HT) AlN interlayer (IL) on the phase separation in crack-free AlGaN grown on GaN have been studied. The depth-dependent cathodoluminescence (CL) spectra indicate a relatively uniform Al distribution in the growth direction, but the monochromatic CL images and the CL spectra obtained by line scan measurements reveal a lateral phase separation in AlGaN grown on relatively thick HT-AlN ILs. Moreover, when increasing the thickness of HT-AlN IL, the domain-like distribution of the AlN mole fraction in AlGaN layers is significantly enhanced through a great reduction of the domain size. The morphology of mesa-like small islands separated by V trenches in the HT-AlN IL, and the grain template formed by the coalescence of these islands during the subsequent AlGaN lateral overgrowth, are attributed to be responsible for the formation of domain-like structures in the AlGaN layer. (c) 2005 American Institute of Physics.
Resumo:
Self-ordering of quasi-quantum wires in multilayer InAlAs/AlGaAs nanostructures grown by molecular beam epitaxy is identified. The chain-like structures along the [1 (1) over bar 0] Of direction formed by coalescence of quantum dots were observed. The photoluminescence of the nanostructures is partially polarized along the [1 (1) over bar 0] direction. The polarization ratio depends on the wavelength and the maximum polarization is on the lower energy side. The maximum polarization increases from 0.32 at 10 K to 0.53 at 100 K, and the energy position of maximum polarization moves near to PL peak with increasing temperature. They are all related to the existence of isolated islands and quasi-quantum wires in our sample. This result provides a novel approach to produce narrow quantum wires. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A strained SiGe/Si superlattice structure has been grown on a patterned Si substrate and its photoluminescence has been studied. The patterned substrate is composed of pyramid-like structures. It is found that there are Ge-rich SiGe quantum wires (QWR) at the crossings of adjacent planes that form the pyramid-like structure. Photoluminescence of strained the SiGe layer grown on a planar substrate and a patterned substrate was compared. The total intensity of photoluminescence from the patterned substrate was 5.2 times larger than that from the planar substrates. The result is discussed and it is believed that this increase in photoluminescence is related to the observed QWRs. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Colloidal gold was prepared by UV light irradiation of the mixture of HAuCl4 aqueous solution and poly(vinyl pyrrolidone) (PVP) ethanol solution in the presence of silver ions. The resulting sheet-like nanoparticles were found to self-assemble into nanoflowers by a centrifuging process. The results of control experiments reflected that only suitable size sheet-like nanoparticles could assemble into the flower-like structures. The presence of Ag ions and PVP are essential for the formation process of nanoflowers.
Resumo:
Au-Pt bimetallic nanoparticles (NPs) were synthesized by reducing the mixture of HAuCl4 and K2PtCl6 with ethanol in the presence of cinnamic acid (C6H5CHCHCO2H, CA) through a thermal process. It was found that the isolated NPs could gradually self-assemble into chain-like structures, ultimately to 3-dimensional network nanostructures by adjusting the molar ratio of CA to K2PtCl6. Energy-dispersive Spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction was used to confirm the formation of Au-Pt bimetallic nanostructures.