123 resultados para shallow acceptor

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have recently found evidence of new donor acceptor pair (DAP) luminescence in molecular beam epitaxy (MBE) grown films. A variety of nominally undoped samples have been studied by photoluminescence (PL) over a temperature range of 5-300 K. The samples show intensive luminescence al energies of 3.404-3.413 eV varying with different sample at 5 K, as well as a fairly strong (DX)-X-0 line at low temperature. We attribute the Line at 3.404-3.413 eV to DAP recombination which is over 0.1 eV different from the well known DAP caused by ME-doping in GaN. The DAP line shows fine structure. it even predominates in one particular sample. The peak position shifts to higher energy with temperature increasing from 5 up to 70 K, and as the excitation laser intensity increases. The data are consistent with DAP luminescence involving an acceptor level of about 90 meV (presumably carbon) above the valence band edge in GaN. It is much shallower than the acceptor level of 250 meV produced by the p-type dopant Mg which is commonly used at present. (C) 1997 Elsevier Science S.A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the density function theory within the generalized gradient approximation, the band structures of wurtzite ZnO, BeO and MgO have been calculated. The effective-mass parameters are fitted using the calculated eigenvalues. The Dresselhaus spin-orbit effect appears in the k[1 00] direction, and is zero in the high symmetry direction k[00 1]. The orderings of valence band split by the crystal-field and spin-orbit coupling in wurtzite ZnO, BeO and MgO are identified by analyzing the wave function characters calculated by projecting the wave functions onto p-state in the spherical harmonics. For wurtzite ZnO, the ordering of valence band is Still Gamma(7) > Gamma(9) > Gamma(7) due to the negative spin-orbit coupling splitting energy and the positive crystal-field splitting energy. Thus, the Thomas' conclusion is confirmed. For wurtzite BeO and MgO, although their orderings of valence bands are Gamma(7) > Gamma(9) > Gamma(7) too, the origins of their orderings are different from that of wurtzite ZnO. Zn1-x,YxO (Y = Mg, Be) doped with N and P atoms have been studied using first-principles method. The calculated results show that N atom doped in Zn1-x BexO has more shallow acceptor energy level with increasing the concentration of Be atom. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two Mg-doped GaN films with different doping concentrations were grown by a metalorganic chemical vapor deposition technique. Photoluminescence (PL) experiments were carried out to investigate the optical properties of these films. For highly Mg-doped GaN, the PL spectra at 10 K are composed of a blue luminescence (BL) band at 2.857 eV and two excitonic luminescence lines at 3.342 eV and 3.282 eV, in addition to a L2 phonon replica at 3.212 eV. The intensity of the L1 line decreases monotonously with an increase,in temperature. However, the intensity of the L2 line first slowly increases at first, and then decreases quickly with an increase in temperature. The two lines are attributed to bound excitonic emissions at extended defects. The BL band is most likely due to the transition from deep donor Mg-V-N complex to Mg shallow acceptor. From the temperature dependence of the luminescence peak intensity of the BL band, the activation energy of acceptor Mg was found to be 290 meV. (C) 2003 American Vacuum Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of room-temperature optical transitions in a Mg-doped cubic GaN epilayer grown on GaAs(100) by metalorganic chemical vapor deposition has been investigated. By examining the dependence of photoluminescence on the excitation intensity (which varied over four orders) at room temperature, four different emissions with different origins were identified. A blue emission at similar to 3.037 eV was associated with a shallow Mg acceptor, while three different lower-energy emissions at similar to 2.895, similar to 2.716, and similar to 2.639 eV were associated with a deep Mg complex. In addition to a shallow acceptor at E congruent to 0.213 eV, three Mg-related deep defect levels were also found at around 215, 374, and 570 meV (from the conduction band). (C) 2000 American Institute of Physics. [S0021-8979(00)01904-6].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report lithium passivation of the shallow acceptors Zn and Cd in p-type GaAs which we attribute to the formation of neutral Li-Zn and Li-Cd complexes. Similar to hydrogen, another group-I element, lithium strongly reduces the concentration of free holes when introduced into p-type GaAs. The passivation is inferred from an increase of both the hole mobility and the resisitivity throughout the bulk of the sample. It is observed most clearly for Li concentrations comparable to the shallow-acceptor concentration. In addition, compensation of shallow acceptors by randomly distributed donors is present in varying degree in the Li-diffused samples. Unlike hydrogenation of n-type GaAs, Li doping shows no evidence of neutralizing shallow donors in GaAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cd in GaAs is an acceptor atom and has the largest atomic diameter among the four commonly-used group-II shallow acceptor impurities (Be, Mg, Zn and Cd). The activation energy of Cd (34.7 meV) is also the largest one in the above four impurities, When Cd is doped by ion implantation, the effects of lattice distortion are expected to be apparently different from those samples ion-implanted by acceptor impurities with smaller atomic diameter. In order to compensate the lattice expansion and simultaneously to adjust the crystal stoichiometry, dual incorporation of Cd and nitrogen (N) was carried out into GaAs, Ion implantation of Cd was made at room temperature, using three energies (400 keV, 210 keV, 110 keV) to establish a flat distribution, The spatial profile of N atoms was adjusted so as to match that of Cd ones, The concentration of Cd and N atoms, [Cd] and [N] varied between 1 x 10(16) cm(-3) and 1 x 10(20) cm(-3). Two type of samples, i.e., solely Cd+ ion-implanted and dually (Cd+ + N+) ion-implanted with [Cd] = [N] were prepared, For characterization, Hall effects and photoluminescence (PL) measurements were performed at room temperature and 2 K, respectively. Hall effects measurements revealed that for dually ion-implanted samples, the highest activation efficiency was similar to 40% for [Cd] (= [N])= 1 x 10(18) cm(-3). PL measurements indicated that [g-g] and [g-g](i) (i = 2, 3, alpha, beta,...), the emissions due to the multiple energy levels of acceptor-acceptor pairs are significantly suppressed by the incorporation of N atoms, For [Cd] = [N] greater than or equal to 1 x 10(19) cm(-3), a moderately deep emission denoted by (Cd, N) is formed at around 1.45-1.41 eV. PL measurements using a Ge detector indicated that (Cd, N) is increasingly red-shifted in energy and its intensity is enhanced with increasing [Cd] = [N], (Cd, N) becomes a dominant emission for [Cd] = [N] = 1 x 10(20) cm(-3). The steep reduction of net hole carrier concentration observed for [Cd]/[N] less than or equal to 1 was ascribed to the formation of (Cd, N) which is presumed to be a novel radiative complex center between acceptor and isoelectronic atoms in GaAs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The intrinsic large electronegativity of O 2p character of the valence-band maximum (VBM) of ZnO renders it extremely difficult to be doped p type. We show from density functional calculation that such VBM characteristic can be altered by compensated donor-acceptor pairs, thus improve the p-type dopability. By incorporating (Ti+C) or (Zr+C) into ZnO simultaneously, a fully occupied impurity band that has the C 2p character is created above the VBM of host ZnO. Subsequent doping by N in ZnO: (Ti+C) and ZnO: (Zr+C) lead to the acceptor ionization energies of 0.18 and 0.13 eV, respectively, which is about 200 meV lower than it is in pure ZnO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p-type doping is a great challenge for the full utilization of ZnO as short-wavelength optoelectronic material. Due to a large electronegative characteristic of oxygen, the ionization energy of acceptors in ZnO is usually too high. By analyzing the defect wave-function character, we propose several approaches to lower the acceptor ionization energy by codoping acceptors with donor or isovalent atoms. Using the first-principles band-structure method, we show that the acceptor transition energies of V-Zn-O-O can be reduced by introducing F-O next to V-Zn to reduce electronic potential, whereas the acceptor transition energy of N-O-nZn(Zn) (n=1-4) can be reduced if we replace Zn by isovalent Mg or Be to reduce the anion and cation kinetic p-d repulsion, as well as the electronic potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe-doped semi-insulating (SI) InP has become semi-conducting (SC) material completely after annealing at 900 V for 10 hours. Defects in the SC and SI InP materials have been studied by deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) respectively. The DLTS only detected Fe acceptor related deep level defect with significant concentration, suggesting the formation of a high concentration of shallow donor in the SC-InP TSC results confirmed the nonexistence of deep level defects in the annealed SI-InP. The results demonstrate a significant influence of the thermally induced defects on the electrical properties of SI-InP. The formation mechanism and the nature of the shallow donor defect have been discussed based on the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oscillatory thermocapillary convection and hydrothermal wave in a shallow liquid layer, where a temperature difference is applied between two parallel sidewalls, have been numerically investigated in a two-dimensional model. The oscillatory thermocapillary convection and hydrothermal wave appear if the Marangoni number is larger than a critical value. The critical phase speed and critical wave number of the hydrothermal wave agree with the ones given analytically by Smith and Davis in the microgravity environment, and it travels in the direction opposed to the surface flow. Another wave traveled downstream in addition to the hydrothermal wave traveled upstream was observed in the case of earth gravity condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrothermal wave was investigated numerically for large-Prandtl-number fluid (Pr = 105.6) in a shallow cavity with different heated sidewalls. The traveling wave appears and propagates in the direction opposite to the surface flow (upstream) in the case of zero gravity when the applied temperature difference grows and over the critical value. The phase relationships of the disturbed velocity, temperature and pressure demonstrate that the traveling wave is driven by the disturbed temperature, which is named hydrothermal wave. The hydrothermal wave is so weak that the oscillatory flow field and temperature distribution can hardly be observed in the liquid layer. The exciting mechanism of hydrothermal wave is analyzed and discussed in the present paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical model for shallow-water equations has been built and tested on the Yin-Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the physical field [i.e., the volume integrated average ( VIA) and the point value (PV)] are treated as the model variables and updated separately in time. In the present model, the PV is computed by the semi-implicit semi-Lagrangian formulation, whereas the VIA is predicted in time via a flux-based finite-volume method and is numerically conserved on each component grid. The concept of including an extra moment (i.e., the volume-integrated value) to enforce the numerical conservativeness provides a general methodology and applies to the existing semi-implicit semi-Lagrangian formulations. Based on both VIA and PV, the high-order interpolation reconstruction can only be done over a single grid cell, which then minimizes the overlapping zone between the Yin and Yang components and effectively reduces the numerical errors introduced in the interpolation required to communicate the data between the two components. The present model completely gets around the singularity and grid convergence in the polar regions of the conventional longitude-latitude grid. Being an issue demanding further investigation, the high-order interpolation across the overlapping region of the Yin-Yang grid in the current model does not rigorously guarantee the numerical conservativeness. Nevertheless, these numerical tests show that the global conservation error in the present model is negligibly small. The model has competitive accuracy and efficiency.