194 resultados para sequence identity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Growth hormone (GH), prolactin (PRL) and somatolactin (SL) were purified simultaneously under alkaline condition (pH 9.0) from pituitary glands of sea perch (Lateolabrax japonicas) by a two-step procedure involving gel filtration on Sephadex G-100 and reverse-phase high-performance liquid chromatography (rpHPLC). At each step of purification, fractions were monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by immunoblotting with chum salmon GH. PRL and SL antisera. The yields of sea perch GH, PRL and SL were 4.2, 1.0 and 0.28 mg/g wet tissue, respectively. The molecular weights of 19,200 and 20,370 Da were estimated by SDS-PAGE for sea perch GH and PRL, respectively. Two forms of sea perch SL were found: one (28,400 Da) is probably glycosylated, while the other one (23,200 Da) is believed to be deglycosylated. GH bioactivity was examined by an in vivo assay. Intraperitoneal injection of sea perch GH at a dose of 0.01 and 0.1 mug/g body weight at 7-day intervals resulted in a significant increase in body weight and length of juvenile rainbow trout. The complete sea-perch GH amino acid sequence of 187 residues was determined by sequencing fragments cleaved by chemicals and enzymes. Alignment of sea-perch GH with those of other fish GHs revealed that sea-perch GH is most similar to advanced marine fish, such as tuna, gilthead sea bream, yellowfin porgy, red sea bream, bonito and yellow tail with 98.4, 96.2%, 95.7%, 95.2%, 94.1% and 91% sequence identity, respectively. Sea-perch GH has low identity to Atlantic cod (76.5%), hardtail (73.3%), flounder (68.4%), chum salmon (66.3%), carp (54%) and blue shark (38%). Partial amino-acid sequences of 127 of sea-perch PRL and the N-terminal of 16 amino-acid sequence of sea-perch SL have been determined. The data show that sea-perch PRL has a slightly higher sequence identity with tilapia PRL( 73.2%) than with chum salmon PRL(70%) in this 127 amino-acid sequence. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we attempt to characterize protein evolution by residue features which dominate residue substitution in homologous proteins. Evolutionary information contained in residue substitution matrix is abstracted with the method of eigenvalue decomposition. Top eigenvectors in the eigenvalue spectrums are analyzed as function of the level of similarity, i.e. sequence identity (SI) between homologous proteins. It is found that hydrophobicity and volume are two significant residue features conserved in protein evolution. There is a transition point at SI approximate to 45%. Residue hydrophobicity is a feature governing residue substitution as SI >= 45%. Whereas below this SI level, residue volume is a dominant feature. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) has been identified and purified to homogeneity. It is a single chain glycoprotein with an apparent molecular weight of 33,000 and an isoelectric point of pH 5.2. It specifically activates plasminogen through an enzymatic reaction. The activation of human native GIu-plasminogen by TSV-PA is due to a single cleavage of the molecule at the peptide bond Arg(561)-Val-(562). Purified TSV-PA, which catalyzes the hydrolysis of several tripeptide p-nitroanilide substrates, does not activate nor degrade prothrombin, factor X, or protein C and does not clot fibrinogen nor show fibrino(geno)lytic activity in the absence of plasminogen. The activity of TSV-PA was readily inhibited by phenylmethanesulfonyl fluoride and by p-nitrophenyl-p-guanidinobenzoate. Oligonucleotide primers designed on the basis of the N-terminal and the internal peptide sequences of TSV-PA were used for the amplification of cDNA fragments by polymerase chain reaction. This allowed the cloning of a full-length cDNA encoding TSV-PA from a cDNA library prepared from the venom glands. The deduced complete amino acid sequence of TSV-PA indicates that the mature TSV-PA protein is composed of 234 amino acids and contains a single potential N-gIycosylation site at Asn(1G1). The sequence of TSV-PA exhibits a high degree of sequence identity with other snake venom proteases: 66% with the protein C activator from Aghistrodon contortrix contortrix venom, 63% with batroxobin, and 60% with the factor V activator from Russell's viper venom. On the other hand, TSV-PA shows only 21-23% sequence similarity with the catalytic domains of u-PA and t-PA. Furthermore, TSV-PA lacks the sequence site that has been demonstrated to be responsible for the interaction of t-PA (KHRR) and u-PA (RRHR) with plasminogen activator inhibitor type 1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel trypsin inhibitor was identified and purified from skin secretions of Chinese red-belly toad Bombina maxima. The partial N-terminal 29 amino acid residues of the peptide, named BMTI, were determined by automated Edman degradation. This allowed the cloning of a full-length cDNA encoding BMTI from a cDNA library prepared from the toad skin. The deduced complete amino acid sequence of BMTI indicates that mature BMTI is composed of 60 amino acids. A FASTA search in the databanks revealed that BMTI exhibits 81.7% sequence identity with BSTI, a trypsin/thrombin inhibitor from European toad Bombina bombina skin secretions. Sequence differences between BMTI and BSTI were due to 11 substitutions at positions 2, 9, 25, 27, 36-37, 39, 41-42, 50 and 56. BMTI potently inhibited trypsin with a K-i value of 0.06 muM, similar to that of BSTI. However, unlike BSTI, which also inhibited thrombin with a K-i value of 1 muM, no inhibitory effect of BMTI on thrombin was observed under the assay conditions. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The specific plasminogen activator from Trimeresurus stejnegeri venom (TSV-PA) is a serine proteinase presenting 23% sequence identity with the proteinase domain of tissue type plasminogen activator, and 63% with batroxobin, a fibrinogen clotting enzyme from Bothrops atrox venom that does not activate plasminogen. TSV-PA contains six disulfide bonds and has been successfully overexpressed in Escherichia coli (Zhang, Y., Wisner, A., Xiong, Y. L,, and Bon, C, (1995) J. Biol. Chem. 270, 10246-10255), To identify the functional domains of TSV-PA, we focused on three short peptide fragments of TSV-PA showing important sequence differences with batroxobin and other venom serine proteinases. Molecular modeling shows that these sequences are located in surface loop regions, one of which is next to the catalytic site, When these sequences were replaced in TSV-PA by the equivalent batroxobin residues none generated either fibrinogen-clotting or direct fibrinogenolytic activity, Two of the replacements had little effect in general and are not critical to the specificity of TSV-PA for plasminogen. Nevertheless, the third replacement, produced by the conversion of the sequence DDE 96a-98 to NVI, significantly increased the K-m for some tripeptide chromogenic substrates and resulted in undetectable plasminogen activation, indicating the key role that the sequence plays in substrate recognition by the enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel L-amino acid oxidase, named TSV-LAO, has been purified and cloned from the snake Trimeresurus stejnegeri. Fifty percentage cytotoxic concentrations (CC50) of TSV-LAO on C8166 cells were 24 and 390 nM in the absence or presence of catalase (400nM), respectively. However, at concentrations that showed little effect on cell viability, TSV-LAO displayed dose dependent inhibition on HIV-1 infection and replication. The antiviral selectivity indexes (CC50/EC50) were 16 and 6, respectively, corresponding to the measurements of syncytium formation and HIV-1 p24 antigen expression. Interestingly, the presence of catalase resulted in an increase of its antiviral selectivity to 52 and 38. Under the same conditions, no anti-HIV-1 activity was observed by exogenous addition of H2O2. The complete amino acid sequence of TSV-LAO, as deduced from its cDNA, exhibits a high degree of sequence identity with other snake venom LAOs. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A platelet glycoprotein Ib-binding protein, termed TSV-GPIb-BP, was isolated from the venom of Trimeresurus stejnegeri. On SDS-polyacrylamide gel electrophoresis, TSV-GPIb-BP showed a single band with an apparent molecular weight of 28,000 and two distinct bands with apparent molecular weights of 16,000 and 15,000 under non-reducing and reducing conditions, respectively. cDNA clones containing the coding sequences for both TSV-GPIb-BP subunits were isolated and sequenced. The deduced amino acid sequences of TSV-GPIb-BP subunits were confirmed by N-terminal protein sequencing and trypsin-digested peptide mass fingerprinting. Interestingly, the a subunit of TSV-GPIb-BP is identical to that of alboaggregin-B, and the sequence identity of their beta subunits is 94.3%. TSV-GPIb-BP inhibited ristocetin-induced human platelet agglutination in platelet-rich plasma under lower dosages (<5 mug/ml). On the other hand, it directly aggregated washed human platelets in the absence of additional Ca2+ or any other cofactors under higher dosages (>5 mug/ml). This platelet aggregation activity was dose-dependently inhibited by specific GPIbalpha antibodies, but not by those antibodies against platelet GPIa, GPIIa, GPIIb and GPIIIa. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel 28-amino acid peptide, termed bombinakinin-GAP, was purified and characterized from skin secretions of the toad Bombina maxima. Its primary structure was established as DMYEIKQYKTAHGRPPICAPGEQCPIWV-NH2, in which two cysteines form a disulfide bond. A FASTA search of SWISS-PROT databank detected a 32% sequence identity between the sequences of the peptide and a segment of rat cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular (i.c.v.) administration of the peptide induced a significant decrease in food intake in rats, suggesting that it played a role in the control of feeding by brain. Analysis of its cDNA structure revealed that this peptide is coexpressed with bombinakinin M, a bradykinin-related peptide from the same toad. Bombinakinin-GAP appears to be the first example of a novel class of bioactive peptides from amphibian skin, which may be implicated in feeding behavior. (C) 2003 Elsevier Science Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel kinin-releasing and fibrin (ogen)olytic enzyme termed jerdonase was purified to homogeneity from the venom of Trimeresurus jerdonii by DEAE Sephadex A-50 anion exchange, Sephadex G-100 (superfine) gel filtration and reverse-phase high performance liquid chromatography (RP-HPLC). Jerdonase migrated as a single band with an approximate molecular weight of 55 kD under the reduced conditions and 53 kD under the non-reduced conditions. The enzyme was a glycoprotein containing 35.8% neutral carbohydrate. The N-terminal amino acid sequence of jerdonase was determined to be IIGGDECNINEHPFLVALYDA, which showed high sequence identity to other snake venom serine proteases. Jerdonase catalyzed the hydrolysis of BAEE, S-2238 and S-2302, which was inhibited by phenymethylsulfonyl fluoride (PMSF), but not affected by ethylenediaminetetraacetic acid (EDTA). Jerdonase preferentially cleaved the Aalpha-chain of human fibrinogen with lower activity towards Bbeta-chain. Moreover, the enzyme hydrolyzed bovine low-molecular-mass kininogen and releasing bradykinin. In conclusion, all results indicated that jerdonase was a multifunctional venom serine protease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With comparative genomics approaches, we evaluated the evolutionary characteristics of conservation of exons which are expressed abundantly, moderately or lowly in mammals. Using non-coding regions and pseudogenes as controls, sequence identity, phastCons

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

UV-inactivated GCHV (grass carp hemorrhage virus) is able to induce an antiviral state in cultured CAB cells (crucian carp Carassius auratus blastulae embryonic cells) via the production of interferon (IFN). In the current work, the full-length cDNAs of two Mx genes, termed CaMx1 and CaMx2, have been cloned and sequenced from UV-inactivated GCHV-infected and still IFN-producing CAB cells by suppression subtractive hybridization. Their putative proteins show the characteristically structural features of mammalian IFN-induced Mx proteins, including GTP-binding motif, dynamin family signature and leucine zipper motif. CaMx1 exhibits 85% sequence identity to zebrafish MxA and 72-74% to three Atlantic salmon Mx proteins. CaMx2 is most similar to zebrafish MxE, with 80% identity, and then rainbow trout Mx3, with 52%. Constitutive expression was detected by RT-PCR for CaMx1, but not for CaMx2, in normal CAB cells, but their up-regulations could be induced after treatment with active GCHV, UV-inactivated GCHV and CAB IFN. Distinct kinetics of expression was observed for either CaMx1 or CaMx2 corresponding to the three stimuli, and even between CaMx1 and CaMx2, corresponding to the same stimulus. Upon virus infection, the transcriptional induction was strongly blocked for CaMx2 by cycloheximide (CHX), whereas almost nothing was observed for CaMx1. By contrast, following treatment with CAB IFN, CHX did not inhibit either gene transcription. Collectively, these results suggest that there are very distinct mechanisms for modulating the expression of both CaMx1 and CaMx2 in normal and GCHV-infected CAB cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

禾谷孢囊线虫(Heterodera avenae)是严重危害禾谷类作物的病原线虫之一,它广泛分布于澳大利亚、欧洲、北美、印度和中国等世界主要小麦产区,使作物严重减产,造成巨大的经济损失。目前最有效的防治措施之一是将外源抗性基因导入栽培小麦(Triticum aestivum L.),培育抗禾谷孢囊线虫的新品种。但迄今为止抗禾谷孢囊线虫基因克隆研究的相关报道却很少。 本实验根据此前从抗禾谷孢囊线虫材料E-10扩增得到的与来自节节麦(Aegilops tauschii)的抗禾谷孢囊线虫基因Cre3高度同源的序列Rccn4,设计出三条嵌套引物,采用SON-PCR(single oligonucleotide nested PCR)方法,从E-10基因组DNA中得到一个长为1264 bp的扩增产物(命名为Rccn-L),测序比对结果显示,这一序列将Rccn4的3’端延伸了1209 bp,与抗禾谷孢囊线虫Cre3基因核苷酸同源性为86﹪,核苷酸编码区长1026 bp,含一个不完整的开放阅读框,一个终止密码子,没有起始密码子和内含子结构,编码一个342个氨基酸残基的蛋白质。该蛋白质等电点为5.19,分子量为38112.6Da。从序列的第113位开始到第332位是NBS-LRR类抗病性基因LRR区,呈现XXLXXLXXL重复。LRR编码区内亮氨酸残基的含量达17﹪,与抗禾谷孢囊线虫Cre3基因LRR编码区的核苷酸和氨基酸同源性分别为89﹪和78﹪。本实验首次将SON-PCR成功地运用于植物基因克隆,为植物基因克隆提供了又一有效方法。 此外,还根据Cre3基因及其他的NBS-LRR类植物抗性基因的NBS和LRR区保守序列设计了两对特异性引物,从禾谷孢囊线虫抗性材料易变山羊草基因组DNA中扩增到两个相应的目标条带。测序分析结果表明,它们的长度分别为532bp和1175bp,构成了一个有32bp的共同序列的NBS-LRR编码区。其序列总长为1675bp(命名为RCCN),含有一个不完整的开放阅读框,没有起始密码子、终止密码子和内含子结构。其中编码序列为1673bp,可编码一个557个氨基酸的蛋白质,等电点(pI)为5.39,分子量为63537.5Da。与Cre3的核苷酸和氨基酸同源性分别为87.8﹪和77﹪。RCCN氨基酸序列中含有已知抗病基因NBS区域的几个保守模体:kinase2区的ILDD、kinase3的(ⅰ)ESKILVTTRSK,(ⅱ)KGSPLAARTVGG,(ⅲ)RRCFAYCS及EGF。RCCN NBS区与Cre3 NBS区的核苷酸和氨基酸的同源性分别为96.4﹪和94﹪。从氨基酸序列的274位到548位为LRR保守区,呈现不规则的aXXLXXLXXL(其中a代表I,V,L,F或M)重复,其中亮氨酸的含量为15.6﹪。该区域与Cre3的LRR区的核苷酸和氨基酸同源性分别为80.8﹪和74﹪。推测该序列可能为一个抗禾谷孢囊线虫的新基因。 本文对抗禾谷孢囊线虫基因的克隆研究,为进一步克隆基因全序列,探索其结构与功能,和研究该基因表达与调控提供了关键信息。同时也为通过基因工程途径将抗性基因向优良小麦品种高效、定向转移,最终培育出小麦抗禾谷孢囊线虫新品种奠定了基础。 Cereal cyst nematode (CCN) is a damaging pathogen of broad acre cereal crops in Australia, Europe, North America, India and China. It affects wheat, barley, oat and triticale and causes yield loss of up to 80%. At present, Transferring resistance genes against CCN into wheat cultivars and breeding varieties are considered one of the most effective methods for controlling the CCN. However, there are very limited reports concerning the cloning studies of resistance genes against the cereal cyst nematode. According to the sequence of Rccn4 which had high similarity to the nucleotide binding site (NBS) coding region of cereal cyst nematode resistance gene, Cre3, We designed three 3’ nested primers. Using single oligonucleotide nested PCR (SON-PCR) we successfully amplified one band, Rccn-L, of 1264bp from E-10 which is the wheat-Ae.variabilis translocation line containing the cereal cyst nematode resistance gene of Ae.variabilis. We found that this band of interesting is the 3’ flanking sequence of 1209bp in size of Rccn4. The coding region was 1026bp, which contained an incomplete open reading frame and a terminator codon, without initiation codon and intron, encoding a peptide of 342 amino acid residues, and shared 86﹪nucleotide sequence identity with Cre3. This peptide had a conserved LRR domain, containing the imperfect repeats,XXLXXLXXL, which contains 17﹪ leucine residues and shares, respectively, 89﹪ nucleotide sequence and 78﹪ amino acid sequence identity with the LRR sequence of Cre3 locus. This research firstly used SON-PCR in the research of plant genome successfully, which indicated that SON-PCR is another method of cloning plant gene. At the same time, According to the conversed motif of NBS and LRR region of cereal cyst nematode resistance gene Cre3 from wild wheat (Triticum tauschlii L.) and the known NBS-LRR group resistance genes, we designed two pairs of specific primers for NBS and LRR region respectively. One band of approximately 530bp was amplified using the specific primers for conversed NBS region and one band of approximately 1200bp was amplified with the specific primers for conversed LRR region. After sequencing, we found that these two sequences included 32bp common nucleotide sequence and have 1675 bp in total, which was registered as RCCN in the Genbank. RCCN contained a NBS-LRR domain and an incomplete open reading frame without initiation codon, terminator codon and inxon. Its exon encodes a peptide of 557 amino acid residues. The molecular weight of the protein from the amino acid was 63.537 KDa. The amino acid sequence of RCCN contained conserved motif: ILDD, ESKILVTTRSK, KGSPLAARTVGG, RRCFAYCS, EGF,LRR. RCCN shares 87.8﹪ nucleotide sequence and 77﹪ amino acid sequence identity with cereal cyst nematode gene Cre3. It might be a novel cereal cyst nematode resistance gene. These research results of cloning the resistance genes against cereal cyst nematode bring a great promise for transferring resistance genes into wheat cultivars and breeding new wheat varieties against cereal cyst nematode by gene engineering. And these results also lay the hard foundation for the expressing researches of these genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Edwardsiella tarda is a severe aquaculture pathogen that can infect many important fish species cultured worldwide. The aim of this study was to evaluate the vaccine potential of an E. tarda antigen, Eta21, which was identified from a pathogenic E. tarda strain via the method of in vivo-induced antigen technology (IVIAT). Eta21 is 510-amino acid in length and shares similar to 58% sequence identity with a putative peptidase of several bacterial species. eta21 was subcloned into Escherichia colt, and recombinant Eta21 was purified as a histidine-tagged protein. When used as a subunit vaccine, purified recombinant Eta21 was effective against lethal E. tarda challenge in a Japanese flounder model. In order to improve the immunoprotective efficacy of Eta21, the chimera AgaV-Eta21 was constructed, which consists of Eta21 fused in-frame to the secretion domain of AgaV, an extracellular beta-agarase. E. coli DH5 alpha harboring plasmid pTAET21, which constitutively expresses agaV-eta21, was able to produce and secret AgaV-Eta21 into the extracellular milieu. Vaccination of Japanese flounder with live DH5 alpha/pTAET21 elicited immunoprotection that is significantly higher in level than that induced by vaccination with purified recombinant Eta21. Vaccination with DH5 alpha/pTAET21 and recombinant Eta21 both induced the production of specific serum antibodies at four to eight weeks post-vaccination. Taken together, these results demonstrate that Eta21, especially that delivered by DH5 alpha/pTAET21, is an effective vaccine candidate against E. tarda infection. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor necrosis factor receptor-associated factor 6 (TRAF6), a key signaling adaptor molecule common to the TNFR superfamily and IL-IR/TLR family, is important not only for a diverse array of physiological processes functions of the TNFR superfamily, but also is involved in adaptive immunity and innate immunity. In this report, the first bivalve TRAF6 (named as CfTRAF6) gene is identified and characterized from Zhikong scallop Chlamys farreri. The full-length cDNA of CfTRAF6 is of 2510 bp, consisting of a 5'-terminal untranslated region (UTR) of 337 bp, a 3'-terminal UTR of 208 bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame (ORF) encoding a polypeptide of 655 amino acids. The predicted amino acid sequence of CfTRAF6 comprises characteristic motifs of the TRAF proteins, including a Zinc finger of RING-type, two Zinc fingers of TRAF-type, a coiled-coil region, and a MATH (the meprin and TRAF homology) domain. The overall amino acid sequence identity between CfTRAF6 and other TRAF6s is 28-68%. Phylogenetic analyses of CfTRAF6 sequence with TRAF sequences from other organisms indicate that CfTRAF6 is a true TRAF6 orthologue. The mRNA expression of CfTRAF6 in various tissues is measured by Real-time RT-PCR. The mRNA transcripts are constitutively expressed in tissues of haemocyte, muscle, mantle, heart, gonad and gill, but the highest expression is observed in the gonad. The temporal expressions of CfTRAF6 mRNA in the mixed primary cultured haemocytes are recorded after treatment with 20 mu g mL(-1) and 0.5 mu g mL(-1) peptido-glycan (PGN). The expression level of CfTRAF mRNA is down-regulated from 1.5 h to 3 h after the treatment with 0.5 mu g mL(-1) PGN, and then recovers to the original level. While the expression of CfTRAF6 is obviously decreased after treatment with 20 mu g mL(-1) PGN, and reach the lowest point (only about 1/9 times to control) at 3 h. The result Suggests that CfTRAF6 can be greatly regulated by PGN and it may be involved in signal transduction and immune response of scallop. (C) 2008 Published by Elsevier Ltd.