Identification and immunoprotective analysis of an in vivo-induced Edwardsiella tarda antigen
Data(s) |
01/11/2009
|
---|---|
Resumo |
Edwardsiella tarda is a severe aquaculture pathogen that can infect many important fish species cultured worldwide. The aim of this study was to evaluate the vaccine potential of an E. tarda antigen, Eta21, which was identified from a pathogenic E. tarda strain via the method of in vivo-induced antigen technology (IVIAT). Eta21 is 510-amino acid in length and shares similar to 58% sequence identity with a putative peptidase of several bacterial species. eta21 was subcloned into Escherichia colt, and recombinant Eta21 was purified as a histidine-tagged protein. When used as a subunit vaccine, purified recombinant Eta21 was effective against lethal E. tarda challenge in a Japanese flounder model. In order to improve the immunoprotective efficacy of Eta21, the chimera AgaV-Eta21 was constructed, which consists of Eta21 fused in-frame to the secretion domain of AgaV, an extracellular beta-agarase. E. coli DH5 alpha harboring plasmid pTAET21, which constitutively expresses agaV-eta21, was able to produce and secret AgaV-Eta21 into the extracellular milieu. Vaccination of Japanese flounder with live DH5 alpha/pTAET21 elicited immunoprotection that is significantly higher in level than that induced by vaccination with purified recombinant Eta21. Vaccination with DH5 alpha/pTAET21 and recombinant Eta21 both induced the production of specific serum antibodies at four to eight weeks post-vaccination. Taken together, these results demonstrate that Eta21, especially that delivered by DH5 alpha/pTAET21, is an effective vaccine candidate against E. tarda infection. (C) 2009 Elsevier Ltd. All rights reserved. Edwardsiella tarda is a severe aquaculture pathogen that can infect many important fish species cultured worldwide. The aim of this study was to evaluate the vaccine potential of an E. tarda antigen, Eta21, which was identified from a pathogenic E. tarda strain via the method of in vivo-induced antigen technology (IVIAT). Eta21 is 510-amino acid in length and shares similar to 58% sequence identity with a putative peptidase of several bacterial species. eta21 was subcloned into Escherichia colt, and recombinant Eta21 was purified as a histidine-tagged protein. When used as a subunit vaccine, purified recombinant Eta21 was effective against lethal E. tarda challenge in a Japanese flounder model. In order to improve the immunoprotective efficacy of Eta21, the chimera AgaV-Eta21 was constructed, which consists of Eta21 fused in-frame to the secretion domain of AgaV, an extracellular beta-agarase. E. coli DH5 alpha harboring plasmid pTAET21, which constitutively expresses agaV-eta21, was able to produce and secret AgaV-Eta21 into the extracellular milieu. Vaccination of Japanese flounder with live DH5 alpha/pTAET21 elicited immunoprotection that is significantly higher in level than that induced by vaccination with purified recombinant Eta21. Vaccination with DH5 alpha/pTAET21 and recombinant Eta21 both induced the production of specific serum antibodies at four to eight weeks post-vaccination. Taken together, these results demonstrate that Eta21, especially that delivered by DH5 alpha/pTAET21, is an effective vaccine candidate against E. tarda infection. (C) 2009 Elsevier Ltd. All rights reserved. |
Identificador | |
Idioma(s) |
英语 |
Fonte |
Jiao, Xu-dong; Dang, Wei; Hu, Yong-hua; Sun, Li.Identification and immunoprotective analysis of an in vivo-induced Edwardsiella tarda antigen,FISH & SHELLFISH IMMUNOLOGY,2009,27(5):633-638 |
Palavras-Chave | #Fisheries; Immunology; Marine & Freshwater Biology; Veterinary Sciences #Antigen #Edwardsiella tarda #IVIAT #Subunit vaccine #Vaccine delivery |
Tipo |
期刊论文 |