219 resultados para salt-assisted
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Experimental data are presented to show the influence of a very small amount of inorganic salt on the demulsification of water-in-oil emulsions. It was found that some inorganic salts could effectively enhance the demulsification efficiency and increase the light transmittance of the water separated from the emulsions. The demulsification efficiency may reach 100% in a very short time under microwave radiation.
Resumo:
The effect of inorganic salts such as sodium chloride on the hydrolysis of chitosan in a microwave field was investigated. While it is known that microwave heating is a convenient way to obtain a wide range of products of different molecular weights only by changing the reaction time and/or the radiation power, the addition of some inorganic salts was shown to effectively accelerate the degradation of chitosan under microwave irradiation. The molecular weight of the degraded chitosan obtained by microwave irradiation was considerably lower than that obtained by traditional heating. Moreover, the molecular weight of degraded chitosan obtained by microwave irradiation assisted under the conditions of added salt was considerably lower than that obtained by microwave irradiation without added salt. Furthermore, the effect of ionic strength of the added salts was not linked with the change of molecular weight. FTIR spectral analyses demonstrated that a significantly shorter time was required to obtain a satisfactory molecular weight by the microwave irradiation-assisted inorganic salt method than by microwave irradiation without inorganic salts and conventional technology. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The effect of inorganic salts on the hydrolysis of starch in a microwave field was investigated and it was found that some inorganic salts can effectively accelerate the acid hydrolysis of starch. The yield of D-glucose reached 111 wt% (equal to the theoretical yield). (C) 2001 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper, cooperative self-assembly (CSA) of colloidal spheres with different sizes was studied. It was found that a complicated jamming effect makes it difficult to achieve an optimal self-assembling condition for construction of a well-ordered stacking of colloidal spheres in a relatively short growth time by CSA. Through the use of a characteristic infrared (IR) technique to significantly accelerate local evaporation on the growing interface without changing the bulk growing environment, a concise three-parameter (temperature, pressure, and IR intensity) CSA method to effectively overcome the jamming effect has been developed. Mono- and multiscale inverse opals in a large range of lattice scales can be prepared within a growth time (15-30 min) that is remarkably shorter than the growth times of several hours for previous methods. Scanning electron microscopy images and transmittance spectra demonstrated the superior crystalline and optical qualities of the resulting materials. More importantly, the new method enables optimal conditions for CSA without limitations on sizes and materials of multiple colloids. This strategy not only makes a meaningful advance in the applicability and universality of colloidal crystals and ordered porous materials but also can be an inspiration to the self-assembly systems widely used in many other fields, such as nanotechnology and molecular bioengineering.
Resumo:
This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.
Resumo:
HfO2 films were deposited by electron beam evaporation with different deposition parameters. The properties such as refractive index, weak absorption, and laser induced damage thresholds (LIDTs) of these films have been investigated. It was found that when pulsed Nd:YAG 1064 nm laser is used to investigate LIDT of films: Metallic character is the main factor that influences LIDTs of films obtained from Hf starting material by ion-assisted reaction, and films prepared with higher momentum transfer parameter P have fewer metallic character; The ion-assisted reaction parameters are key points for preparing high LIDT films and if the parameters are chose properly, high LIDT films can be obtained. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Single layers and antireflection films were deposited by electron beam evaporation, ion assisted deposition and interrupted ion assisted deposition, respectively. Antireflection film of quite high laser damage threshold (18J/cm(2)) deposited by interrupted ion assisted deposition were got. The electric field distribution, weak absorption, and residual stress of films and their relations to damage threshold were investigated. It was shown that the laser induced damage threshold of film was the result of competition of disadvantages and advantages, and interrupted ion assisted deposition was one of the valuable methods for preparing high laser induced damage threshold films. (c) 2007 Optical Society of America
Resumo:
Antireflection coatings at the center wavelength of 1053 nm were prepared on BK7 glasses by electron-beam evaporation deposition (EBD) and ion beam assisted deposition (IBAD). Parts of the two kinds of samples were post-treated with oxygen plasma at the environment temperature after deposition. Absorption at 1064 nm was characterized based on surface thermal lensing (STL) technique. The laser-induced damage threshold (LIDT) was measured by a 1064-nm Nd:YAG laser with a pulse width of 38 ps. Leica-DMRXE Microscope was applied to gain damage morphologies of samples. The results revealed that oxygen post-treatment could lower the absorption and increase the damage thresholds for both kinds of as-grown samples. However, the improving effects are not the same. (c) 2008 Elsevier B.V. All rights reserved.