40 resultados para inter-area oscillation frequency

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An anomalous behavior of the current self-oscillation frequency is observed in the dynamic de voltage bands, emerging from each sawtoothlike branch of the current-voltage characteristic of a doped GaAs/A1As superlattice in the transition process from static to dynamic electric field domain formations. Varying the applied de voltage at a fixed temperature, we find that the frequency increases while the averaged current decreases. Inside each voltage band, the frequency has a strong voltage dependence in the temperature range where the averaged current changes with the applied de voltage. This dependence can be understood in terms of motion of the system along a limit cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With a crystal orientation dependent on the etch rate of Si in KOH-based solution, a base-emitter self-aligned large-area multi-linger configuration power SiGe heterojunction bipolar transistor (HBT) device (with an emitter area of about 880 mu m(2)) is fabricated with 2 mu m double-mesa technology. The maximum dc current gain is 226.1. The collector-emitter junction breakdown voltage BVCEO is 10 V and the collector-base junction breakdown voltage BVCBO is 16 V with collector doping concentration of 1 x 10(17) cm(-3) and thickness of 400 nm. The device exhibited a maximum oscillation frequency f(max) of 35.5 GHz and a cut-off frequency f(T) of 24.9 GHz at a dc bias point of I-C = 70 mA and the voltage between collector and emitter is V-CE = 3 V. Load pull measurements in class-A operation of the SiGe HBT are performed at 1.9 GHz with input power ranging from 0 dBm to 21 dBm. A maximum output power of 29.9 dBm (about 977 mW) is obtained at an input power of 18.5 dBm with a gain of 11.47 dB. Compared to a non-self-aligned SiGe HBT with the same heterostructure and process, f(max) and f(T) are improved by about 83.9% and 38.3%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spherically symmetric free radial oscillation in the first post-Newtonian approximation for a homogeneous and isotropic elastic sphere with a constant density is studied. Based on the Xu, Wu, and Soffel formalism, the relation of the oscillation frequency of the sphere with the radius, mass density, and elastic constants of the sphere is derived by using the successive approximation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large area multi-finger configuration power SiGe HBT device(with an emitter area of about 880μm~2)was fabricated with 2μm double-mesa technology.The maximum DC current gain β is 214.The BV_(CEO) is up to 10V,and the BV_(CBO) is up to 16V with a collector doping concentration of 1×10~(17)cm~(-3) and collector thickness of 400nm.The device exhibits a maximum oscillation frequency f_(max) of 19.3GHz and a cut-off frequency f_T of 18.0GHz at a DC bias point of I_C=30mA and V_(CE)=3V.MSG(maximum stable gain)is 24.5dB,and U(Mason unilateral gain)is 26.6dB at 1GHz.Due to the novel distribution layout,no notable current gain fall-off or thermal effects are observed in the I-V characteristics at high collector current.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-finger structure power SiGe HBT device (with an emitter area of about 166μm^2) is fabricated with very simple 2μm double-mesa technology. The DC current gain β is 144.25. The B-C junction breakdown voltage reaches 9V with a collector doping concentration of 1 × 10^17cm^-3 and a collector thickness of 400nm. Though our data are influenced by large additional RF probe pads, the device exhibits a maximum oscillation frequency fmax of 10.1GHz and a cut-off frequency fτ of 1.8GHz at a DC bias point of IC=10mA and VCE = 2.5V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wall pressure fluctuations and surface heat transfer signals have been measured in the hypersonic turbulent boundary layer over a number of compression-corner models. The distributions of the separation shock oscillation frequencies and periods have been calculated using a conditional sampling algorithm. In all cases the oscillation frequency distributions are of broad band, but the most probable frequencies are low. The VITA method is used for deducing large scale disturbances at the wall in the incoming boundary layer and the separated flow region. The results at present showed the existence of coherent structures in the two regions. The zero-cross frequencies of the large scale structures in the two regions are of the same order as that of the separation shock oscillation. The average amplitude of the large scale structures in the separated region is much higher than that in the incoming boundary layer. The length scale of the separation shock motion region is found to increase with the disturbance strength. The results show that the shock oscillation is of inherent nature in the shock wave/turbulent boundary layer interaction with separation. The shock oscillation is considered to be the consequence of the coherent structures in the separated region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimized AlGaN/AlN/GaN high electron mobility transistors (HEMTs) structures were grown on 2-in semi-insulating (SI) 6H-SiC substrate by metal-organic chemical vapor deposition (MOCVD). The 2-in. HEMT wafer exhibited a low average sheet resistance of 305.3 Omega/sq with a uniformity of 3.85%. The fabricated large periphery device with a dimension of 0.35 pm x 2 nun demonstrated high performance, with a maximum DC current density of 1360 mA/mm, a transconductance of 460 mS/mm, a breakdown voltage larger than 80 V, a current gain cut-off frequency of 24 GHz and a maximum oscillation frequency of 34 GHz. Under the condition of continuous-wave (CW) at 9 GHz, the device achieved 18.1 W output power with a power density of 9.05 W/mm and power-added-efficiency (PAE) of 36.4%. While the corresponding results of pulse condition at 8 GHz are 22.4 W output power with 11.2 W/mm power density and 45.3% PAE. These are the state-of-the-art power performance ever reported for this physical dimension of GaN HEMTs based on SiC substrate at 8 GHz. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality AlGaN/GaN high electron mobility transistor (HEMT) structures were grown by metalorganic chemical vapor deposition (MOCVD) on 2-in. sapphire substrates. Two-dimensional electron gas (2DEG) mobility of 1410 cm(2)/Vs and concentration of 1.0X10(13) CM-2 are obtained at 295 K from the HEMT structures, whose average sheet resistance and sheet resistance uniformity are measured to be about 395 Omega/sq and 96.65% on 2-in. wafers, respectively. AlGaN/GaN HEMTs with 0.8 mu m gate length and 0.2 mm gate width were fabricated and characterized using the grown HEMT structures. Maximum current density of 0.9 A/ mm, peak extrinsic transconductance of 290 mS/mm, unity cutoff frequency (f(T)) of 20 GHz and maximum oscillation frequency (f(max) of 46 GHz are achieved. These results represent significant improvements over the previously fabricated devices with the same gate length, which are attributed to the improved performances of the MOCVD-grown HEMT structures. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes two kinds of novel hybrid voltage controlled ring oscillators (VCO) using a single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. The novel SET/MOS hybrid VCO circuits possess the merits of both the SET circuit and the MOS circuit. The novel VCO circuits have several advantages: wide frequency tuning range, low power dissipation, and large load capability. We use the SPICE compact macro model to describe the SET and simulate the performances of the SET/MOS hybrid VCO circuits by HSPICE simulator. Simulation results demonstrate that the hybrid circuits can operate well as a VCO at room temperature. The oscillation frequency of the VCO circuits could be as high as 1 GHz, with a -71 dBc/Hz phase noise at 1 MHz offset frequency. The power dissipations are lower than 2 uW. We studied the effect of fabrication tolerance, background charge, and operating temperature on the performances of the circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhancement of the electrical properties in an AlGaN/GaN high electron mobility transistor (HEMT) structures was demonstrated by employing the combination of a high mobility GaN channel layer and an AlN interlayer. The structures were grown on 50 mm semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition (MOCVD). The room temperature (RT) two-dimensional electron gas (2DEG) mobility was as high as 2215 cm(2)/V s, with a 2DEG concentration of 1.044 x 10(13)cm(-2). The 50 mm HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with a resistance uniformity of 2.02%. The 0.35 Pin gate length HEMT devices based on this material structure, exhibited a maximum drain current density of 1300 mA/mm, a maximum extrinsic transconductance of 314 mS/mm, a current gain cut-off frequency of 28 GHz and a maximum oscillation frequency of 60 GHz. The maximum output power density of 4.10 W/mm was achieved at 8 GHz, with a power gain of 6.13 dB and a power added efficiency (PAE) of 33.6%. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistor (HEMT) structures were grown on 2 inch sapphire substrates by MOCVD, and 0.8-mu m gate length devices were fabricated and measured. It is shown by resistance mapping that the HEMT structures have an average sheet resistance of approximately 380 Omega/sq with a uniformity of more than 96%. The 1-mm gate width devices using the materials yielded a pulsed drain current of 784 mA/mm at V-gs=0.5 V and V-ds=7 V with an extrinsic transconductance of 200 mS/mm. A 20-GHz unity current gain cutoff frequency (f(T)) and a 28-GHz maximum oscillation frequency (f(max)) were obtained. The device with a 0.6-mm gate width yielded a total output power of 2.0 W/mm (power density of 3.33 W/mm) with 41% power added efficiency (PAE) at 4 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical quartz crystal microbalance (EQCM) technique was used to measure the ion transfer in redox processes in electroactive organic thin films, such as self-assembled monolayer (SAM) (4-pyridyl hydroquinone, abbr. 4PHQ), multilayer based on SAM and conducting polymer film (here poly-(3,4-ethylenedioxythiophene), abbr. PEDOT). A mechanism of mixed ion transfer is developed and presented. Analysis of mixed ion transfer during redox processes successfully elucidates the deviation of oscillation frequency of the quartz crystal from theoretical expectation.