285 resultados para fiducial diffraction plane
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
提出一种检测光束准直度的新方法。在对波面矢高进行定义的基础上,提出CCD轴向扫描检测激光束准直度的方法。利用采样光波在会聚透镜后形成的衍射图样,测量两个相同基准衍射图样之间的距离,即可确定入射光波的波面矢高,进而确定入射光波的准直度。在给出测量原理及模拟基准衍射图样的基础上.进行了实验验证。CCD轴向扫描方法具有结构简单、加工便利、操作方便的特点,是检测光束准直度的有效方法。
Resumo:
A new type of wave-front analysis method for the collimation testing of laser beams is proposed. A concept of wave-front height is defined, and, on this basis, the wave-front analysis method of circular aperture sampling is introduced. The wave-front height of the tested noncollimated wave can be estimated from the distance between two identical fiducial diffraction planes of the sampled wave, and then the divergence is determined. The design is detailed, and the experiment is demonstrated. The principle and experiment results of the method are presented. Owing to the simplicity of the method and its low cost, it is a promising method for checking the collimation of a laser beam with a large divergence. © 2005 Optical Society of America.
Resumo:
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
Resumo:
This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x-ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence measurement of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of -0.89 GPa.
Resumo:
The structure of the inhibition patterns is important to the stimulated emission depletion (STED) microscopy. Usually, Laguerre-Gaussian (LG) beam and the central zero-intensity patterns created by inserting phase masks in Gaussian beams are used as the erase beam in STED microscopy. Aberration is generated when focusing beams through an interface between the media of the mismatched refractive indices. By use of the vectorial integral, the effects of such aberration on the shape of depletion patterns and the size of fluorescence emission spot in the STED microscopy are studied. Results are presented as a comparison between the aberration-free case and the aberrated cases. (C) 2009 Optical Society of America
Resumo:
Based on the two-dimensional coupled-wave theory, the wavefront conversion between cylindrical and plane waves by local volume holograms recorded at 632.8 nm and reconstructed at 800 nm is investigated. The proposed model can realize the 90 degrees holographic readout at a different readout wavelength. The analytical integral solutions for the amplitudes of the space harmonics of the field inside the transmission geometry are presented. The values of the off-Bragg parameter at the reconstructed process and the diffracted beam's amplitude distribution are analysed. In addition, the dependences of diffraction efficiency on the focal length of the recording cylindrical wave and on the geometrical dimensions of the grating are discussed. Furthermore, the focusing properties of this photorefractive holographic cylindrical lens are analysed.
Anisotropic Bragg diffraction of finite-sized volume holographic grating in photorefractive crystals
Resumo:
Anisotropic diffraction of uniform plane wave by finite-sized volume holographic grating in photorefractive crystals is considered. It is found that the anisotropic diffraction can take place when some special conditions are satisfied. The diffracted image is obtained in experiment for the anisotropic Bragg diffraction in Fe:LiNbO3 crystals. A coupled wave analysis is presented to study the properties of anisotropic diffraction. An analytical integral solution for the amplitudes of the diffracted beams is submitted. A trade off between high diffraction efficiency and the deterioration of reconstruction fidelity is analyzed. Numerical evaluations also show that the finite-sized anisotropic volume grating exhibits strong angular and wavelength selectivity. All the results are useful for the optimizing design of VHOE based on finite-sized volume grating structures. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
On the basis of diffraction integral and the expansion of the hard-aperture function into a finite series of complex Gaussian functions, an approximate expression for spatially fully coherent polychromatic hollow Gaussian beams passing through aperture lens is obtained. Detailed numerical results indicate that remarkable spectral changes always occurs near the points where the field amplitude has zero value. The effects of truncation parameter, Fresnel number and the beam order on spectral shifts and spectral switches are investigated numerically. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nonpolar a-plane (1 1 2 0) ZnO films are fabricated on (3 0 2)gamma-LiAlO2 substrate by pulsed laser deposition. When substrate temperature is low, c-plane ZnO is dominant. As growth temperature increases to similar to 500 degrees C, pure (1 1 2 0)-oriented ZnO film can be obtained. The X-ray rocking curve of a-plane ZnO film broadens sharply when growth temperature is up to similar to 650 degrees C; such a broadening may be related to the anisotropic lateral growth rate of (1 12 0)-oriented ZnO grains. Atomic force microscopy reveals the surface morphology changes of ZnO films deposited at different temperatures. Raman spectra reveal that a compressive stress exists in the a-plane ZnO film. (C) 2007 Published by Elsevier B.V.
Resumo:
Nonpolar a-plane (1120) ZnO thin films have been fabricated on gamma-LiAlO2 (302) substrates via the low-pressure metal-organic chemical vapor deposition. An obvious intensity variation of the E-2 mode in the Raman spectra indicates that there exhibits in-plane optical anisotropy in the a-plane ZnO thin films. Highly-oriented uniform grains of rectangular shape can be seen from the atomic force microscopy images, which mean that the lateral growth rate of the thin films is also anisotropic. It is demonstrated experimentally that a buffer layer deposited at a low temperature (200 degrees C) can improve the structural and optical properties of the epilayer to a large extent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report the structural and optical properties of nonpolar m-plane GaN and GaN-based LEDs grown by MOCVD on a gamma-LiAlO2 (100) substrate. The TMGa, TMIn and NH3 are used as sources of Ga, In and N, respectively. The structural and surface properties of the epilayers are characterized by x-ray diffraction, polarized Raman scattering and atomic force microscopy (AFM). The films have a very smooth surface with rms roughness as low as 2nm for an area of 10 x 10 mu m(2) by AFM scan area. The XRD spectra show that the materials grown on gamma-LiAlO2 (100) have < 1 - 100 > m-plane orientation. The EL spectra of the m-plane InGaN/GaN multiple quantum wells LEDs are shown. This demonstrates that our nonpolar LED structure grown on the gamma-LiAlO2 substrate is indeed free of internal electric field. The current voltage characteristics of these LEDs show the rectifying behaviour with a turn on voltage of 1-3 V.
Resumo:
Non-polar (1 (1) over bar 00)m-plane ZnO thin film has been prepared on gamma-LiAlO2 (100)substrate via the low pressure metal organic chemical vapor deposition. Obvious intensity variation of the E-2 mode in the polarized Raman spectra and the absorption edge shift in the polarized optical transmission spectra indicate that the m-plane film exhibits optical anisotropy, which have applications in certain optical devices, such as the UV modulator and polarization-dependent beam switch. From the atomic force microscopy images, highly-oriented uniform-sized grains of rectangular shape were observed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Thick nonpolar (10 (1) over bar0) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (10 (1) over bar(3) over bar) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high. resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (10 (1) over bar0) and (10 (1) over bar(3) over bar) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers. [DOI: 10.1143/JJAP.47.3346]
Resumo:
Diluted magnetic nonpolar GaN:Mn films have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films with a subsequent rapid thermal annealing (RTA) process. The structure, morphology and magnetic characteristics of the samples were investigated by means of high-resolution x-ray diffraction (XRD), atomic force microscopy (AFM) and a superconducting quantum interference device (SQUID), respectively. The XRD analysis shows that the RTA process can effectively recover the crystal deterioration caused by the implantation process and that there is no obvious change in the lattice parameter for the as-annealed sample. The SQUID result indicates that the as-annealed sample shows ferromagnetic properties and magnetic anisotropy at room temperature.
Resumo:
GaSb epilayers grown on GaAs(001) vicinal substrate misoriented towards (111) plane were studied using high-resolution x-ray diffraction (HRXRD). The results show that GaSb epilayers exhibit positive crystallographic tilt and the distribution of 60 degrees misfit dislocations (MDs) is imbalanced. The vicinal substrate also leads to the anisotropy of the mosaic structure, i.e. the lateral coherent lengths in [1 (1) over bar0] directions are larger than those in [110] directions. Furthermore, the full-width at half maximum (FWHM) of the off-axis peaks varies with the inclination angle, which is a result of different dislocation densities in the {111} glide planes.