20 resultados para electrical power equipments
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In a typical thermoelectric device, a junction is formed from two different conducting materials, one containing positive charge carriers (holes) and the other negative charge carriers (electrons). When an electric current is passed in the appropriate direction through the junction, both types of charge carriers move away from the junction and convey heat away, thus cooling the junction. Similarly, a heat source at the junction causes carriers to flow away from the junction, making an electrical generator. Such devices have the advantage of containing no moving parts, but low efficiencies have limited their use to specialty applications, such as cooling laser diodes. The principles of thermoelectric devices are reviewed and strategies for increasing the efficiency of novel materials are explored. Improved materials would not only help to cool advanced electronics but could also provide energy benefits in refrigeration and when using waste heat to generate electrical power.
Resumo:
In this paper, a mini-staged multi-stacked quantum cascade laser structure with a designed wavelength of 4.7 mu m is presented. By introducing five 0.5 mu m thick high thermal conductivity InP interbuffer layers, the 60-stages active region core of the quantum cascade laser is divided into six equal parts. Based on simulation, this kind of quantum cascade laser with a 10 mu m ridge width gives nearly circular two-dimensional far-field distribution (FWHM = 32.8 degrees x 29 degrees) and good beam quality parameters M-2 = 1.32 x 1.31 in the fast axis (growth direction) and the slow axis (lateral direction). Due to the enhancement of lateral heat extraction through the interbuffer layers, compared to the conventional structure, a decrease of about 5-6% for the maximum temperature in the active region core of the mini-staged multi-stacked quantum cascade laser with indium-surrounded and gold-electroplated packaging profiles is obtained at all possible dissipated electrical power levels.
Resumo:
Polymer solar cells have the potential to become a major electrical power generating tool in the 21st century. R&D endeavors are focusing on continuous roll-to-roll printing of polymeric or organic compounds from solution-like newspapers-to produce flexible and lightweight devices at low cost. It is recognized, though, that besides the functional properties of the compounds the organization of structures on the nanometer level-forced and controlled mainly by the processing conditions applied-determines the performance of state-of-the-art polymer solar cells. In such devices the photoactive layer is composed of at least two functional materials that form nanoscale interpenetrating phases with specific functionalities, a so-called bulk heterojunction. In this perspective article, our current knowledge on the main factors determining the morphology formation and evolution is introduced, and gaps of our understanding on nanoscale structure-property relations in the field of high-performance polymer solar cells are addressed. Finally, promising routes toward formation of tailored morphologies are presented.
Resumo:
An additional anode catalyst layer with PtRu/C was hot pressed between two Nafion (R) 112 membranes and a conventional direct methanol fuel cell (DMFC) cathode/membrane/anode assembly with the above membranes as separator was fabricated. The additional catalyst layer formed an assistant cell with the cathode to prevent methanol crossover. A simple one-dimensional mathematical model was presented to describe the performance of this new type of membrane electrode assembly system. As seen from both experimental result and model analysis, the additional catalyst layer can not only effectively prevent the methanol crossover, but also generate electrical power with the crossover methanol. The percentage of output power of the assistant cell to the total power analyzed by the model is about 40% under usual condition, which is much higher than that from experimental result, indicating the potential of the development in the DMFC designing. It was also discovered that the electrical power generated from the assistant cell with crossover methanol could take higher percentage in total electrical power when the main DMFC current density became lower.
Resumo:
There is a need for methodology to warm open-field plots in order to study the likely effects of global warming on ecosystems in the future. Herein, we describe the development of arrays of more powerful and efficient infrared heaters with ceramic heating elements. By tilting the heaters at 45 degrees from horizontal and combining six of them in a hexagonal array, good uniformity of warming was achieved across 3-m-diameter plots. Moreover, there do not appear to be obstacles (other than financial) to scaling to larger plots. The efficiency [eta(h) (%); thermal radiation out per electrical energy in] of these heaters was higher than that of the heaters used in most previous infrared heater experiments and can be described by: eta(h) = 10 + 25exp(-0.17 u), where u is wind speed at 2 m height (m s(-1)). Graphs are presented to estimate operating costs from degrees of warming, two types of plant canopy, and site windiness. Four such arrays were deployed over plots of grass at Haibei, Qinghai, China and another at Cheyenne, Wyoming, USA, along with corresponding reference plots with dummy heaters. Proportional integral derivative systems with infrared thermometers to sense canopy temperatures of the heated and reference plots were used to control the heater outputs. Over month-long periods at both sites, about 75% of canopy temperature observations were within 0.5 degrees C of the set-point temperature differences between heated and reference plots. Electrical power consumption per 3-m-diameter plot averaged 58 and 80 kW h day(-1) for Haibei and Cheyenne, respectively. However, the desired temperature differences were set lower at Haibei (1.2 degrees C daytime, 1.7 degrees C night) than Cheyenne (1.5 degrees C daytime, 3.0 degrees C night), and Cheyenne is a windier site. Thus, we conclude that these hexagonal arrays of ceramic infrared heaters can be a successful temperature free-air-controlled enhancement (T-FACE) system for warming ecosystem field plots.
Resumo:
Piezoelectric actuators are distributed on both side of a rectangular wing model,and the possibility of improvement of aircraft rolling power is investigated. The difference between the model with aileron deflection and the model without aileron (fictitious control surface, FCS) is studied. The analytical results show that these two cases are substantial different. In aileron deflection case, the aeroelastic effect is disadvantageous, so the structural stiffness should be high until the electrical voltage is not necessary. But in the case of FCS,the aeroelastic effect is advantageous and it means that lower structural stiffness can lead to lower voltage. Compared with aileron project, the FCS project can save structure weight.
Resumo:
We present our experimental results supporting optical-electrical hybrid data storage by optical recording and electrical reading using Ge2Sb2Te5as recording medium. The sheet resistance of laser- irradiated Ge2Sb2Te5. lms exhibits an abrupt change of four orders of magnitude ( from 10 7 to 10 3./ sq) with increasing laser power, current- voltage curves of the amorphous area and the laser- crystallized dots, measured by a conductive atomic force microscope ( C- AFM), show that their resistivities are 2.725 and 3.375 x 10- 3., respectively, the surface current distribution in the. lms also shows high and low resistance states. All these results suggest that the laser- recorded bit can be read electrically by measuring the change of electrical resistivity, thus making optical electrical hybrid data storage possible.
Resumo:
Sheet resistance of laser-irradiated Ge2Sb2Te5 thin films prepared by magnetron sputtering was measured by the four-point probe method. With increasing laser power the sheet resistance undergoes an abrupt drop from 10(7) to 10(3) Omega/square at about 580 mW. The abrupt drop in resistance is due to the structural change from amorphous to crystalline state as revealed by X-ray diffraction (XRD) study of the samples around the abrupt change point. Crystallized dots were also formed in the amorphous Ge2Sb2Te5 films by focused short pulse laser-irradiated, the resistivities at the crystallized dots and the non-crystallized area are 3.375 x 10(-3) and 2.725 Omega m, sheet resistance is 3.37 x 10(4) and 2.725 x 10(7) Omega/square respectively, deduced from the I-V Curves that is obtained by conductive atomic force microscope (C-AFM). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
InGaN/GaN multi-quantum-well-structure laser diodes with an array structure are successfully fabricated on sapphire substrates. The laser diode consists of four emitter stripes which share common electrodes on one laser chip. An 800-mu m-long cavity is formed by cleaving the substrate along the < 1 (1) over bar 00 >. orientation using laser scriber. The threshold current and voltage of the laser array diode are 2A and 10.5 V, respectively. A light output peak power of 12W under pulsed current injection at room temperature is achieved. We simulate the electric properties of GaN based laser diode in a co-planar structure and the results show that minimizing the difference of distances between the different ridges and the n-electrode and increasing the electrical conductivity of the n-type GaN are two effective ways to improve the uniformity of carrier distribution in emitter stripes. Two pairs of emitters on a chip are arranged to be located near the two n-electrode pads on the left and right sides, and the four stripe emitters can laser together. The laser diode shows two sharp peaks of light output at 408 and 409 nm above the threshold current. The full widths at half maximum for the parallel and perpendicular far field patterns are 8 degrees and 32 degrees, respectively.
Resumo:
Al0.38Ga0.62N/AIN/GaN HEMT structures have been grown by metal-organic chemical vapor deposition (MOCVD) on 2-inch sapphire substrates. Samples with AIN growth time of 0s (without AIN interlayer), 12, 15, 18 and 24s are characterized and compared. The electrical properties of two-dimensional electron gas (2DEG) are improved by introducing AIN interlayers. The AIN growth time in the range of 12-18s, corresponding to the AIN thickness of 1-1.5 nm, is appropriate for the design of Al0.38Ga0.62N/AIN/GaN HEMT structures. The lowest sheet resistance of 277 Omega sq(-1) and highest room temperature 2DEG mobility of 1460 cm(2)V(-1) s(-1) are obtained on structure with AIN growth time of 12s. The structure with AIN growth time of 15s exhibits the highest 2DEG concentration of 1.59 x 10(13) cm(-2) and the smallest RMS surface roughness of 0.2 nm. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A Monte Carlo simulation on the basis of quantum trajectory approach is carried out for the measurement dynamics of a single-electron spin resonance. The measured electron, which is confined in either a quantum dot or a defect trap, is tunnel coupled to a side reservoir and continuously monitored by a mesoscopic detector. The simulation not only recovers the observed telegraphic signal of detector current, but also predicts unique features in the output power spectrum which are associated with electron dynamics in different regimes.
Resumo:
The structure of micro-LEDs was optimized designed. Optical, electrical and thermal characteristics of micro-LEDs were improved. The optimized design make micro-LEDs suitable for high-power device. The light extraction efficiency of micro-LEDs was analyzed by the means of ray tracing. The results shows that increasing the inclination angle of sidewall and height of mesa, and reducing the absorption of p and n electrode can enhance the light extraction efficiency of micro-LEDs. Furthermore, the total light output power can be boosted by increasing the density of micro-structures on the device. The high-power flip-chip micro-LEDs were fabricated, which has higher quantum efficiency than conventional BALED's. When the number of microstructure in micro-LEDs was increased by 57%, the light output power was enhanced 24%. Light output power is 82.88mW at the current of 350mA and saturation current is up to 800mA, all of these are better than BALED which was fabricated in the same epitaxial wafer. The IN characteristics of micro-LEDs are almost identical to BALED.
Resumo:
A group of prototype integrated circuits are presented for a wireless neural recording micro-system. An inductive link was built for transcutaneous wireless power transfer and data transmission. Power and data were transmitted by a pair of coils on a same carrier frequency. The integrated receiver circuitry was composed of a full-wave bridge rectifier, a voltage regulator, a date recovery circuit, a clock recovery circuit and a power detector. The amplifiers were designed with a limited bandwidth for neural signals acquisition. An integrated FM transmitter was used to transmit the extracted neural signals to external equipments. 16.5 mW power and 50 bps - 2.5 Kbps command data can be received over 1 MHz carrier within 10 mm. The total gain of 60 dB was obtained by the preamplifier and a main amplifier at 0.95Hz - 13.41 KHz with 0.215 mW power dissipation. The power consumption of the 100 MHz ASK transmitter is 0.374 mW. All the integrated circuits operated under a 3.3 V power supply except the voltage regulator.
Resumo:
An analog baseband circuit made in a 0.35-μm SiGe BiCMOS process is presented for China Multimedia Mobile Broadcasting (CMMB) direct conversion receivers. A high linearity 8th-order Chebyshev low pass filter (LPF) with accurate calibration system is used. Measurement results show that the filter provides 0.5-dB pass-band ripple, 4% bandwidth accuracy, and -35-dB attenuation at 6 MHz with a cutoff frequency of 4 MHz. The current steering type variable gain amplifier (VGA) achieves more than 40-dB gain range with excellent temperature compensation.This tuner baseband achieves an OIP3 of 25.5 dBm, dissipates 16.4 mA under a 2.8-V supply and occupies 1.1 mm~2 of die size.
Resumo:
A 5.2 GHz variable-gain amplifier (VGA) and a power amplifier (PA) driver are designed for WLAN IEEE 802.11a monolithic RFIC. The VGA and the PA driver are implemented in a 50 GHz 0.35 μm SiGe BiCMOS technology and occupy 1.12×1.25 mm~2 die area. The VGA with effective temperature compensation is controlled by 5 bits and has a gain range of 34 dB. The PA driver with tuned loads utilizes a differential input, single-ended output topology, and the tuned loads resonate at 5.2 GHz. The maximum overall gain of the VGA and the PA driver is 29 dB with the output third-order intercept point (OIP3) of 11 dBm. The gain drift over the temperature varying from -30 to 85℃ converges within±3 dB. The total current consumption is 45 mA under a 2.85 V power supply.