156 resultados para carbon-ion beams

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To determine the effects of carbon ion beams with five different linear energy transfer (LET) values on adventitious shoots from in vitro leaf explants of Saintpaulia ionahta Mauve cultivar with regard to tissue increase, shoots differentiation and morphology changes in the shoots. Materials and methods: In vitro leaf explant samples were irradiated with carbon ion beams with LET values in the range of 31 similar to 151 keV/mu m or 8 MeV of X-rays (LET 0.2 keV/mu m) at different doses. Fresh weight increase, surviving fraction and percentage of the explants with regenerated malformed shoots in all the irradiated leaf explants were statistically analysed. Results: The fresh weight increase (FWI) and surviving fraction (SF) decreased dramatically with increasing LET at the same doses. In addition, malformed shoots, including curliness, carnification, nicks and chlorophyll deficiency, occurred in both carbon ion beam and X-ray irradiations. The induction frequency with the former, however, was far more than that with the X-rays. Conclusions: This work demonstrated the LET dependence of the relative biological effectiveness (RBE) of tissue culture of Saintpaulia ionahta according to 50% FWI and 50% SF. After irradiating leaf explants with 5 Gy of a 221 MeV carbon ion beam having a LET value of 96 keV/mu m throughout the sample, a chlorophyll-deficient (CD) mutant, which could transmit the character of chlorophyll deficiency to its progeny through three continuous tissue culture cycles, and plantlets with other malformations were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon films were deposited by mass-selected ion beam technique with ion energies 50-200eV at a substrate temperature from room temperature to 80 degreesC,. For the energies used, smooth diamond-like carbon films were deposited at room temperature. When the substrate temperature was 600 degreesC,rough graphitic films were produced. But highly oriented carbon tubes were observed when the energies were larger than 140eV at 800 degreesC. They were perpendicular to the surface and parallel to each other. preferred orientation of graphite basic plane was observed by high-resolution electron microscopy. Shallow ion implantation and stress are responsible for this orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon ion radiotherapy/Fractionated irradiation/R-BE/Premature terminal differentiation. To investigate the influence of fractionation on cell survival and radiation induced premature differentiation as markers for early and late effects after X-rays and carbon irradiation. Normal human fibroblasts NHDF, AG1522B and WI-38 were irradiated With 250 kV X-rays, or 266 MeV/u, 195 MeV/u and I I MeV/u carbon ions. Cytotoxicity was measured by a clonogenic survival assay or by determination of the differentiation pattern. Experiments with high-energy carbon ions show that fractionation induced repair effects are similar to photon irradiation. The RBE10 values for clonogenic survival are 1.3 and 1.6 for irradiation in one or two fractions for NHDF cells and around 1.2 for AG1522B cells regardless of the fractionation scheme. The RBE for a doubling of post mitotic fibroblasts (PMF) in the population is I for both single and two fractionated irradiation of NHDF cells. Using I I MeV/u carbon ions, no repair effect can be seen in WI-38 cells. The RBE10 for clonogenic survival is 3.2 for single irradiation and 4.9 for two fractionated irradiations. The RBE for a doubling of PMF is 3.1 and 5.0 for single and two fractionated irradiations, respectively. For both cell lines the effects of high-energy carbon ions representing the irradiation of the skin and the normal tissue in the entrance channel are similar to the effects of X-rays. The fractionation effects are maintained. For the lower energy, which is representative for the irradiation of the tumor region. RBE is enhanced for clonogenic survival as well as for premature terminal differentiation. Fractionation effects are not detectable. Consequently, the therapeutic ratio is significantly enhanced by fractionated irradiation with carbon ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For radiation protection purposes, the neutron dose in carbon ion radiation therapy at the HIRFL (Heavy Ion Research Facility in Lanzhou) was investigated. The neutron dose from primary C-12 ions with a specific energy of 100 MeV/u delivered from SSC was roughly measured with a standard Anderson-Broun rem-meter using a polyethylene target at various distances. The result shows that a maximum neutron dose contribution of 19 mSv in a typically surface tumor treatment was obtained, which is less than 1% of the planed heavy ion dose and is in reasonable agreement with other reports. Also the gamma-ray dose was measured in this experiment using a thermo luminescent detector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low loss index enhanced planar waveguides in Nd3+-doped silicate glass were fabricated by 3.0 MeV C+ ion implantation. The enhancement of the refractive index confined the light propagating in the waveguide. The prism-coupling method was used to measure dark modes in the waveguide. The effective refractive indices of the waveguide were obtained based on the dark modes. The moving fiber method was applied to measure the waveguide propagation loss. Loss measured in non-annealed samples is about 0.6 dB/cm. And the waveguide mode optical near-field output at 633 nm was presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nd:silicate glass was implanted at room temperature by 6.0 MeV C3+ ions with a dose of 2.0 x 10(15) ions cm(-2). A waveguide with thickness of about 6.3 mu m was formed. The prism-coupling method was used to observe the dark modes of the waveguide at 633 nm and 1539 nm, respectively. There are three dark modes at 633 nm, of which one is the enhanced-index mode. The propagation loss of the enhanced-index mode in the waveguide measured at 633 nm is 0.42 dB cm(-1) after annealing at 217 degrees C for 35 min. The reflectivity calculation method was applied to simulate the refractive index profiles in the waveguide. The mode optical near-field output at 633 nm was presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 degrees C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model. (c) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medium energy (5-25 keV) C-13(+) ion implantation into diamond (100) to a fluence ranging from 10(16) cm(-2) to 10(18) cm(-2) was performed for the study of diamond growth via the approach of ion beam implantation. The samples were characterized with Rutherford backscattering/channelling spectroscopy, Raman spectroscopy, X-ray photoemission spectroscopy and Auger electron spectroscopy. Extended defects are formed in the cascade collision volume during bombardment at high temperatures. Carbon incorporation indeed induces a volume growth but the diamond (100) samples receiving a fluence of 4 x 10(17) to 2 x 10(18) at. cm(-2) (with a dose rate of 5 x 10(15) at. cm(-2) s(-1) at 5 to 25 keV and 800 degrees C) showed no He-ion channelling. Common to these samples is that the top surface layer of a few nanometers has a substantial amount of graphite which can be removed by chemical etching. The rest of the grown layer is polycrystalline diamond with a very high density of extended defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether adenovirus-mediated wild-type p53 transfer after radiotherapy could radiosensitize non-small-cell lung cancer (NSCLC) cells to subclinical-dose carbon-ion beam (C-beam), H1299 cells were exposed to a C-beam or -ray and then infected with 5 MOI of AdCMV-p53 or GFP (C-beam or -ray with p53 or GFP).Cell cycle was detected by flow cytometric analysis. The apoptosis was examined by a fluorescent microscope with DAPI staining. DNA fragmentation was monitored by the TUNEL assay. P53 mRNA was detected by reverse-transcriptase polymerase chain reaction. The expression of p53, MDM2, and p21 was monitored by Western blot. Survival fractions were determined by colony-forming assay. The percentages of G1-phase cells in C-beam with p53 increased by 8.2%–16.0%, 5.2%–7.0%, and 5.8%–18.9%, respectively, compared with C-beam only, -ray with p53, or p53 only. The accumulation of G2-phase cells in C-beam with p53 increased by 5.7%–8.9% and 8.8%–14.8%, compared with those in -ray with p53 or p53 only, respectively. The percentage of apoptosis for C-beam with p53 increased by 7.4%–19.1%, 5.8%–11.7%, and 5.2%–19.2%, respectively, compared with C-beam only, -ray with p53, or p53 only. The level of p53 mRNA in C-beam with p53 was significantly higher than that in p53 only. The expression level of p53 and p21 in C-beam with p53 was significantly higher than that in both C-beam with GFP and p53 only. The survival fractions for C-beam with p53 were significantly less than those for the other groups (p 0.05). The data suggested that AdCMV-p53 transfer could more efficiently radiosensitize H1299 cells to subclinical-dose C-beam irradiation through the restoration of p53 function.