370 resultados para ULTRAVIOLET EMISSION
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The ZnO films were grown on Ag/Si(001) substrates by sputtering Ag and ZnO targets successively in a pure Ar ambient. A significant enhancement of ZnO ultraviolet emission and a reduction of its full width of half maximum have been observed while introducing a 100 nm Ag interlayer between ZnO film and Si substrate. Furthermore, a complete suppression of the defect related visible emission was also found for the ZnO/Ag/Si sample. This improved optical performance of ZnO is attributed to the resonant coupling between Ag surface plasmon and ultraviolet emission of ZnO. (c) 2007 American Institute of Physics.
Resumo:
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 degrees C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 degrees C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 degrees C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Low indium content InGaN/AlGaN multiple quantum wells (MQWs) have been grown on Si(111) substrate by metal-organic chemical vapour deposition (MOCVD). A new method of using an isoelectronic indium-doped AlGaN barrier has been found to be very effective in improving the crystalline quality and interfacial abruptness of InGaN quantum well layers. We grew five periods of In0.06Ga0.94N/Al0.20Ga0.80N:In MQWs with In-doped barrier layers and obtained strong near-ultraviolet (UV) emission (similar to 400 nm) at room temperature. An In-doped AlGaN barrier improves the room-temperature PL intensity of InGaN/AlGaN MQWs, making it a candidate barrier for a near-UV source on Si substrate.
Resumo:
ZnO films prepared by the thermal oxidation of the ZnS films through thermal evaporation are reported. The as-deposited ZnS films have transformed to ZnO films completely at 400 degrees C. The 400-700 degrees C annealed films with a preferential c-axis (002) orientation have a hexagonal wurtzite structure. The band gap of ZnO films shifts towards longer wavelength with the increase of the annealing temperature. The relationship between the band gap energy of ZnO films and the grain size is discussed. The shift of the band gap energy can be ascribed to the quantum confinement effect in nanocrystal ZnO films. The photoluminescence spectra of ZnO films show a dominant ultraviolet emission and no deep level or trap state defect emission in the green region. It confirms the absence of interstitial zinc or oxygen vacancies in ZnO films. These results indicate that ZnO film prepared by this simple thermal oxidation method is a promising candidate for optoelectronic devices and UV laser. (c) 2005 Elsevier BN. All rights reserved.
Resumo:
The effects of the surface morphology of Ag on the surface-plasmon-enhanced emission of ZnO films have been studied for a ZnO/Ag/Si system by photoluminescence spectroscopy and atomic force microscopy. The results indicate that the enhancement of ZnO ultraviolet emission is dependent on the deposition conditions of the Ag interlayers. By examining the dependence of the enhancement ratio of surface-plasmon-mediated emission on the characteristic parameters of Ag surface morphology, we found that the surface plasmon coupling to light is determined by both the Ag particle size and density.
Resumo:
The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors.
Resumo:
A novel wide-bandgap conjugated polymer (PDHFSCHD) consisting of alternating dihexylfluorene and rigidly twisted biphenyl units has been synthesized. The new fluorene-based copolymer composed of rigid twisting segments in the main-chain exhibits an optical bandgap of as high as 3.26 eV, and a highly efficient ultraviolet emission with peaks at 368 nm and 386 nm. An electroluminescence device from PDHFSCHD neat film as an active layer shows UV emission which peaks at 395 nm with a turn on voltage below 8 V By optimizing the device conditions, a peak EL quantum efficiency of 0.054% and brightness of 10 cd.m(-2) was obtained. Furthermore, blending a poly(dihexylfluorene) in the PDHFSCHD host gave pure blue emission peaking at 417 nm, and 440 nm without long wavelength emission from aggregated species. Efficient energy transfer from PDHFSCHD to PDHF was demonstrated in these blended systems. Depressed chain-aggregation of PDHF in the PDHFSCHD host can correspond to pure blue emission behaviors.
Resumo:
利用光学多道分析仪,在JF-10氢氧爆轰驱动高焓激波风洞上测量了二维钝体驻点的发射光谱.实验结果表明,在200~280nm的波长范围内,辐射主要来自NO的γ系,同时还分辨出了OH的A-X跃迁、N_2~+的B-X跃迁和烧蚀金属的原子线辐射.
Resumo:
The dynamic interaction processes between a nano-second laser pulse and a gas-puff target, such as those of plasma formation, laser heating, and x-ray emission, have been investigated quantitatively. Time and space-resolved x-ray and optical measurement techniques were used in order to investigate time-resolved laser absorption and subsequent x-ray generation. Efficient absorption of the incident laser energy into the gas-puff target of 17%, 12%, 38%, and 91% for neon, argon, krypton, and xenon, respectively, was shown experimentally. It was found that the laser absorption starts and, simultaneously, soft x-ray emission occurs. The soft x-ray lasts much longer than the laser pulse due to the recombination. Temporal evolution of the soft x-ray emission region was analyzed by comparing the experimental results to the results of the model calculation, in which the laser light propagation through a gas-puff plasma was taken into account. (C) 2003 American Institute of Physics.
Resumo:
ZnO nanoflowers are synthesized on AIN films by solution method. The synthesized nanoflowers are composed of nanorods, which are pyramidal and grow from a central point, thus forming structures that are flower-shaped as a whole. The nanoflowers have two typical morphologies: plate-like and bush-like. The XRD spectrum corresponds to the side planes of the ZnO nanorods made up of the nanoflowers. The micro-Raman spectrum of the ZnO nanoflowers exhibits the E-2 (high) mode and the second order multiple-phonon mode. The photoluminescence spectrum of the ZnO nanoflowers exhibits ultraviolet emission centred at 375 nm and a broad green emission centred at 526 nm.
Resumo:
High-density and uniform well-aligned ZnO sub-micron rods are synthesized on the silicon substrate over a large area. The morphology, and structure of the ZnO sub-micron rods are investigated by x-ray diffraction, transmission electron microscopy and Raman spectra. It is found that the ZnO sub-micron rods are of high crystal quality with the diameter in the range of 400-600 nm and the length of several micrometres long. The optical properties were studied bill photoluminescence spectra. The results show that the intensity of the ultraviolet emission at 3.3 eV is rather high, meanwhile the deep level transition centred at about 2.38 eV is weak. The free exciton emission could also be observed at low, temperature, which implies the high optical quality of the ZnO sub-micron rods. This growth technique provides one effective way to fabricate the high crystal quality ZnO nanowires array, which is very important for potential applications in the new-type optoelectronic nanodevices.
Resumo:
Quasi-aligned ZnO nanotubes have been grown on silicon substrates by metalorganic chemical vapor deposition without using any catalyst. Two kinds of ZnO nanotubular structures were found: Nanotubes with single walls and nanotubes with double walls. The nanotubes were grown along the [001] direction. Room-temperature photoluminescence measurements of the ZnO nanotubes indicate strong ultraviolet emission and weak green emission. A new growth mode for these ZnO nanotubes is proposed, which can be used to prepare other nanotubular structures. (c) 2005 American Institute of Physics.
Resumo:
We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.
Resumo:
ZnO thin films with highly c-axis orientation have been fabricated on p-type Si(1 1 1) substrates at 400 degrees C by pulsed laser deposition (PLD) from a metallic Zn target with oxygen pressures between 0.1 and 0.7 mbar. Experimental results indicate that the films deposited at 0.3 and 0.5 mbar have better crystalline and optical quality and flatter surfaces than the films prepared at other pressures. The full width at half maximum (FWHM) of (0 0 0 2) diffraction peak decreases remarkably from 0.46 to 0.19 degrees with increasing annealing temperature for the film prepared at 0.3 mbar. In photoluminescence (PL) spectra at room temperature, the annealed film at 700 degrees C exhibits a smaller ultraviolet (UV) peak FWHM of 108 meV than the as-grown film (119 meV). However, an enhanced deep-level emission is observed. Possible origins to above results are discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
High quality ZnO films have been successfully grown on Si(100) substrates by Metal-organic chemical vapor deposition (MOCVD) technique. The optimization of growth conditions (II-VI ratio, growth temperature, etc) and the effects of film thickness and thermal treatment on ZnO films' crystal quality, surface morphology and optical properties were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) spectrum, respectively. The XRD patterns of the films grown at the optimized temperature (300 degrees C) show only a sharp peak at about 34.4 degrees corresponding to the (0002) peak of hexagonal ZnO, and the FWHM was lower than 0.4 degrees. We find that under the optimized growth conditions, the increase of the ZnO films' thickness cannot improve their structural and optical properties. We suggest that if the film's thickness exceeds an optimum value, the crystal quality will be degraded due to the large differences of lattice constant and thermal expansion coefficient between Si and ZnO. In PL analysis, samples all displayed only ultraviolet emission peaks and no observable deep-level emission, which indicated high-quality ZnO films obtained. Thermal treatments were performed in oxygen and nitrogen atmosphere, respectively. Through the analysis of PL spectra, we found that ZnO films annealing in oxygen have the strongest intensity and the low FWHM of 10.44 nm(106 meV) which is smaller than other reported values on ZnO films grown by MOCVD.