98 resultados para Tunnel lining.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 in, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from -0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 turn in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity. (C) 2007 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In virtue of reference Cartesian coordinates, geometrical relations of spatial curved structure are presented in orthogonal curvilinear coordinates. Dynamic equations for helical girder are derived by Hamilton principle. These equations indicate that four generalized displacements are coupled with each other. When spatial structure degenerates into planar curvilinear structure, two generalized displacements in two perpendicular planes are coupled with each other. Dynamic equations for arbitrary curvilinear structure may be obtained by the method used in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A side-wall compression scramjet model with different combustor geometries has been tested in a propulsion tunnel that typically provides the testing flow with Mach number of 5.8, total temperature of 1800K, total pressure of 4.5MPa and mass flow rate of 4kg/s. This kerosene-fueled scramjet model consists of a side-wall compression inlet, a combustor and a thrust nozzle. A strut was used to increase the contraction ratio and to inject fuels, as well as a mixing enhancement device. Several wall cavities were also employed for flame-holding. In order to shorten the ignition delay time of the kerosene fuel, a little amount of hydrogen was used as a pilot flame. The pressure along the combustor has an evident raise after ignition occurred. Consequently thrust was observed during the fuel-on period. However, the thrust was still less than the drag of the scramjet model. For this reason, the drag variation produced by different strut and cavities was tested. Typical results showed that the cavities do not influence the drag so much, but the length of the strut does.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the free-stream thermo-chemical state on the test model flow field in the high-enthalpy tunnel are studied numerically. The properties of the free-stream, which is in thermo-chemical non-equilibrium, are determined by calculating the nozzle flow field. A free-stream with total enthalpy equal to the real one in the tunnel while in thermo-chemical equilibrium is constructed artificially to simulate the natural atmosphere condition. The flow fields over the test models (blunt cone and Apollo command capsule model) under both the non-equilibrium and the virtual equilibrium free-stream conditions are calculated. By comparing the properties including pressure, temperature, species concentration and radiation distributions of these two types of flow fields, the effects of the non-equilibrium state of the free-stream in the high-enthalpy shock tunnel are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A vortex-induced vibration (VIV) model is presented for predicting the nonlinear dynamic response of submerged floating tunnel (SFT) tethers which are subjected to wave, current and tunnel oscillatory displacements at their upper end in horizontal and vertical directions. A nonlinear fluid force formula is introduced in this model, and the effect of the nonlinearity of tether is investigated. First, the tunnel is stationary and the tether vibrates due to the vortices shedding. The calculated results show that the cross-flow amplitude of VIV decreases compared with the linear model. However the in-line amplitude of VIV increases. Next, the periodical oscillation of tunnel is considered. The oscillation caused by wave forces plays the roles of parametric exciter and forcing exciter to the VIV of tether. The time history of displacement of the tether mid-span is obtained by the proposed model. It is shown that the in-line amplitude increases obviously and the corresponding frequency is changed. The cross-flow amplitude exhibits a periodic behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent progress of submerged floating tunnel (SFT) investigation and SFT prototype (SFTP) project in Qiandao Lake (Zhejiang Province, P.R. China) is the background of this research. Structural damping effect is brought into present computation model in terms of Rayleigh damping. Based on the FEM computational results of SFTPs as a function of buoyancy-weight ratio (BWR) under hydrodynamic loads, the effect of BWR on the dynamic response of SFT is illustrated. In addition, human comfort index is adopted to discuss the comfort status of the SFTP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since 2001, a research group in the Institute of Mechanics, Chinese Academy of Sciences, has been devoted to the research of essential mechanics issues for submerged floating tunnel (SFT). In addition to the structural design of the SFT prototype in Qiandao Lake, the relevant researches cover a number of topics. This paper briefly describes the research procedure and results, including dynamic response of SFT due to surface wave, vortex-induced vibration of anchoring system, structural analysis of curved SFT, temperature effects of curved SFT, structural dynamic response due to accidental load, and effects of structural parameters (buoyancy-weight ratio, tunnel length,tether stiffness,etc.) on dynamic response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work was supported in part by the National Natural Science Foundation of China under Grant 60536010, Grant 60606019, Grant 60777029, and Grant 60820106004, and in part by the National Basic Research Program of China under Grant 2006CB604902, Grant 2006CB302806, and Grant 2006dfa11880.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported the all electronic demonstration of spin injection and detection in the trilayers with hybrid structure of CoFeB/GaAs/(Ga,Mn)As (metal/insulator semiconductor) by probing the magnetoresistance at low temperature from 1.8 to 30 K. Tunneling magnetoresistance (TMR) ratios of 3.8%, 4.7%, 2.9%, and 1.4% at 1.8, 10, 20, and 30 K, respectively, were observed. Bias dependence of both the junction resistance and TMR ratio was studied systematically. V-half at which TMR drops to half of its maximum is 6.3 mV, being much smaller compared to that observed in (Ga,Mn)As/ZnSe/Fe and (Ga,Mn)As/AlAs/MnAs hybrid structures, indicating lower Fermi energy of (Ga,Mn)As.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunnel-regenerated multiple-active-region (TRMAR) light-emitting diodes (LEDs) with high quantum efficiency and high brightness have been proposed and fabricated. We have proved experimentally that the efficiency of the electrical luminescence and the on-axis luminous intensity of such TRMAR LEDs scaled linearly approximately with the number of the active regions. The on-axis luminous intensity of such TRMAR LEDs with only 3 mum GaP current spreading layer have exceeded 5 cd at 20 mA dc operation under 15 degrees package. The high-quantum-efficiency and high-brightness LEDs under the low injection level were realized. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel semiconductor laser structure is put forward to resolve the major difficulties of high power laser diodes. In this structure, several active regions are cascaded by tunnel junctions to form a large optical cavity and to achieve super high efficiency. This structure can solve the problems of catastrophic optical damage of facet, thermal damage and poor light beam quality effectively. Low-pressure metalorganic chemical vapor deposition method is adopted to grow the novel semiconductor laser structures, which are composed of Si:GaAs/C:GaAs tunnel junctions, GaAs/InGaAs strain quantum well active regions. External differential quantum efficiency as high as 2.2 and light power output of 2.5 W per facet (under 2A drive current) are achieved from an uncoated novel laser device with three active regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron-doped hydrogenated silicon films with different gaseous doping ratios (B_2H_6/SiH_4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (E_a). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-type GaAs substrates are used and their conductive type is changed to p-type by tunnel junction for AlGaInP light emitting diodes (TJ-LED), then n-type GaP layer is used as current spreading layer. Because resistivity of the n-type GaP is lower than that of p-type, the effect of current spreading layer is enhanced and the light extraction efficiency is increased by the n-type GaP current spreading layer. For TJ-LED with 3μm n-type GaP current spreading layer, experimental results show that compared with conventional LED with p-type GaP current spreading layer, light output power is increased for 50% at 20mA and for 66.7% at 100mA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We fabricate 1.5 mu m InGaAsP/InP tunnel injection multiple-quantum-well (TI-MQW) Fabry-Perot (F-P) ridge lasers. The laser heterostructures, including an inner cladding layer and an InP tunnel barrier layer, are grown by metal-organic chemical-vapor deposition (MOCVD). Characteristic temperature.. 0 of 160K at 20 degrees C is obtained for 500-mu m-long lasers. T-0 is measured as high as 88K in the temperature range of 15-75 degrees C. Cavity length dependence of T-0 is investigated.