97 resultados para Thickness of the mucosa
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A series of ZnO thin films were deposited on ZnO buffer layers by DC reactive magnetron sputtering. The buffer layer thickness determination of microstructure and optical properties of ZnO films was investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. XRD results revealed that the stress of ZnO thin films varied with the buffer layer thickness. With the increase of buffer layer thickness, the band gap edge shifted toward longer wavelength. The near-band-edge (NBE) emission intensity of ZnO films deposited on ZnO buffer layer also varied with the increase of thickness due to the spatial confinement increasing the Coulomb interaction between electrons and holes. The PL measurement showed that the optimum thickness of the ZnO buffer layer was around 12 nm. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the dependence of current-voltage characteristics of AlAs/In0.53Ga0.47As/InAs resonant tunnelling diodes (RTDs) on spacer layer thickness. It finds that the peak and the valley current density J in the negative differential resistance (NDR) region depends strongly on the thickness of the spacer layer. The measured peak to valley current ratio of RTDs studied here is shown to improve while the current density through RTDs decreases with increasing spacer layer thickness below a critical value.
Resumo:
The effect of thickness of the high-temperature (HT) AlN buffer layer on the properties of GaN grown on Si(111) has been investigated. Optical microscopy (OM), atomic force microscopy (AFM) and X-ray diffraction (XRD) are employed to characterize these samples grown by metal-organic chemical vapor deposition (MOCVD). The results demonstrate that the morphology and crystalline properties of the GaN epilayer strongly depend on the thickness of HT AlN buffer layer, and the optimized thickness of the HT AlN buffer layer is about 110 nm. Together with the low-temperature (LT) AlN interlayer, high-quality GaN epilayer with low crack density can be obtained. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the growth of AlGaN epilayers on a sapphire substrate by metalorganic chemical vapour deposition using various low-temperature ( LT) AlN buffer thicknesses. Combined scanning electron microscopy and cathodoluminescence investigations reveal the correlation between the surface morphology and optical properties of AlGaN films in a microscopic scale. It is found that the suitable thickness of the LT AlN buffer for high quality AlGaN growth is around 20 nm. The Al compositional inhomogeneity of the AlGaN epilayer is attributed to the low lateral mobility of Al adatoms on the growing surface.
Resumo:
The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.
Resumo:
The effects of lamellar thickness on the epitaxial crystallization of polyethylene on the oriented isotatic polypropylene have been studied by means of transmission electron microscopy. The results obtained from the bright field electron microscopy and electron diffraction show that the epitaxial orientation of the PE crystals on the iPP substrate depends not only on the thickness of the oriented iPP lamellae, but also on the lamellar thickness of PE crystals. No epitaxial orientation relationship between PE crystal and iPP substrate can be found, when the PE crystals are thicker than the lamellar thickness of iPP along the matching direction. This suggests, that the epitaxial nucleation of PE in the PE/iPP epitaxial system is controlled not only by the chain-row matching, but also by a secondary nucleation process.
Resumo:
Detailed investigations on the structural and mechanical properties of the forewing of the cicada were carried out. Measurement of the structures of the wings showed that the thickness of the membrane of each cell and the diameter of each vein were non-uniform in both the longitudinal and transverse directions, and their means were approximately 12.2 and 133.3 mum, respectively. However, the aspect ratios of the wings and the bodies were quite uniform and were approximately equal to 2.98 and 2.13, respectively. Based on the measured thickness, mass and area of the membranes of the cells, the mean density and the mean area density of the wing were approximately 2.3 g cm(-3) and 2.8 x 10(-3) g cm(-2), respectively. In addition, the diameters of the veins of the wings, including the diameters of the holes in the vein of the leading edge, were examined. The mechanical properties of the wing were investigated separately by nanoindentation and tensile testing. The results indicated that the mean Young's modulus, hardness and yield stress of the membranes of the wings were approximately 3.7 Gpa, 0.2 Gpa and 29 Mpa, respectively, and the mean Young's modulus and strength of the veins along the direction of the venation of wings were approximately 1.9 Gpa and 52 Mpa, respectively. Finally, the relevant results were briefly analyzed and discussed, providing a guideline to the biomimetic design of the aerofoil materials of micro air vehicles.
Resumo:
The effective elastic modulus and fracture toughness of the nanofilm were derived with the surface relaxation and the surface energy taken into consideration by means of the interatomic potential of an ideal crystal. The size effects of the effective elastic modulus and fracture toughness were discussed when the thickness of the nanofilm was reduced. And the dependence of the size effects on the surface relaxation and surface energy was also analyzed.
Resumo:
Poly(dimethylsiloxane) (PDMS) has been widely used in lab-on-a-chip and micro- total analysis systems (mu-TAS), thus wetting and electrowetting behaviors of PDMS are of great importance in these devices. PDMS is a kind of soft polymer material, so the elastic deformation of PDMS membrane by a droplet cannot be neglected due to the vertical component of the interfacial tension between the liquid and vapor, and this vertical component of liquid-vapor surface tension is also balanced by the stress distribution within the PDMS membrane. Such elastic deformation and stress distribution not only affect the exact measurement of contact angle, but also have influence on the micro-fluidic behavior of the devices. Using ANSYS code, we simulated numerically the elastic deformation and stress distribution of PDMS membrane on a rigid substrate due to the liquid-vapor surface tension. It is found that the vertical elastic deformation of the PDMS membrane is on the order of several tens of nanometers due to the application of a droplet with a diameter of 2.31 mm, which is no longer negligible for lab-on-a-chip and mu-TAS. The vertical elastic deformation increases with the thickness of the PDMS membrane, and there exists a saturated membrane thickness, regarded as a semi-infinite membrane thickness, and the vertical elastic deformation reaches a limiting value when the membrane thickness is equal to or thicker than such saturated thickness. (C) Koninklijke Brill NV, Leiden, 2008.
Resumo:
Molecular dynamics (MD) simulations are carried out to analyze the diffusion bonding at Cu/Al interfaces. The results indicate that the thickness of the interfacial layer is temperature-dependent, with higher temperatures yielding larger thicknesses. At temperatures below 750 K, the interface thickness is found to increase in a stepwise manner as a function of time. At temperatures above 750 K, the thickness increases rapidly and smoothly. When surface roughness is present, the bonding process consists of three stages. In the first stage, surfaces deform under stress, resulting in increased contact areas. The second stage involves significant plastic deformation at the interface as temperature increases, resulting in the disappearance of interstices and full contact of the surface pair. The last stage entails the diffusion of atoms under constant temperature. The bonded specimens show tensile strengths reaching 88% of the ideal Cu/Al contact strength. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A sediment core was collected from the centre of Wanghu Lake, in the Middle Reaches of the Yangtze River. The recent part of the core was dated using a combination of Pb-210 and spheroidal carbonaceous particle (SCP) techniques. Extrapolating this chronology dated the laminated section of the core, between 723 and 881 mm, to the first half of the 18th century and this section was selected for detailed study. The thicknesses of the laminae were measured using reflecting and polarizing microscopes whilst geochemistry was determined by an electron probe. The thickness of the dark layers was found to be positively correlated with titanium concentrations, and negatively correlated with aluminium and potassium concentrations. The thickness of the light layers was found to be negatively correlated with the concentrations of titanium. It is concluded that the dark layers were deposited from the Fushui River, a tributary of the Yangtze River, under periods of normal flow whilst the light Layers were mainly deposited from the Yangtze River itself during flood periods. Documentary evidence for floods occurring in the take catchment corresponded with thick laminations of high titanium concentration. Further, two of the three thickest, light laminations with low titanium concentrations were found to be synchronous with recorded flood dates of the main Yangtze River in its Middle Reaches, but one was synchronous with a local drought. These data suggest that the Lake sediment provides an archive of the relative water levels of the Yangtze and Wanghu including floods of both the main Yangtze River and the local hydrological regime. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The peritrichs have been recognized as a higher taxon of ciliates since 1968. However, the phylogenetic relationships among them are still unsettled, and their placement within the class Oligohymenophorea has only been supported by the analysis of the small subunit rRNA gene sequence of Opisthonecta henneguyi. DNA was isolated directly from field-sampled species for PCR, and was used to resolve relationships within the genus Epistylis and to confirm the stability of the placement of peritrichs. Small subunit rRNA gene sequences of Epistylis plicatilis, Epistylis urceolata, Epistylis chysemydis, Epistylis hentscheli, Epistylis wenrichi, and Vorticella campanula were sequenced and analyzed using both distance-matrix and maximum-parsimony methods. In phylogenetic trees, the monophyly of both the genus Epistylis and the subclass Peritrichia was strongly supported, while V. campanula clustered with Vorticella microstoma. The topology in which E. plicatilis and E. hentscheli formed a strongly supported sister clade to E. urceolata, E. chrysemydis, and E. wenrichi was consistent with variations in the thickness of the peristomial lip. We concluded that the peristomial area, especially the. peristomial lip, might be the important phylogenetic character within the genus Epistylis.
Resumo:
We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.
Resumo:
The variation of the structure, morphology and the electrical properties of thin amorphous silicon films caused by Rapid Thermal Annealing is studied. The films annealed at 1200degreesC for 2 minutes change their structure to polycrystalline and as a result their resistivity decreases by 4 orders of magnitude. Due to the small thickness of the as deposited amorphous silicon the obtained poly-Si is strongly irregular and has many discontinuities in its texture.
Resumo:
We have investigated the effect of the thickness and layer number of the low-temperature A1N interlayer (LT-A1N IL) on the stress relaxation and the crystal quality of GaN epilayers grown on Si (111) substrate by metalorganic chemical vapor deposition. It is found that the stress decreases with the increase of the LT-AIN IL thickness, but the crystal quality of the GaN epilayer goes worse quickly when the LT-AIN IL thickness is larger than 16 nm. This is because the increase of the LT-AIN IL thickness will increase the coalescence thickness of its upper GaN layer, which sensitively affects the crystal quality of the epilayer. Using multiple LT-AIN ILs is an effective method not only to reduce the stress, but also to improve the crystal quality of the GaN epilayer. With the increase of the interlayer number, the probability that dislocations are blocked increases and the probability that dislocations are produced at interfaces decreases. Thus, dislocations in the most upper part of GaN are reduced, resulting in the improvement of the crystal quality. Finally, it is suggested that when the total thickness of the epilayer is fixed, both the thickness and the number of the LT-AIN IL should be carefully designed to reduce the stress and improve the crystal quality of the epilayer simultaneously. (c) 2004 Elsevier B.V.. All rights reserved.