43 resultados para Structure response
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A major impetus to study the rough surface and complex structure in near surface model is because accuracy of seismic observation and geophysical prospecting can be improved. Wave theory study about fluid-satuated porous media has important significance for some scientific problems, such as explore underground resources, study of earth's internal structure, and structure response of multi-phase porous soil under dynamic and seismic effect. Seismic wave numerical modeling is one of the effective methods which understand seismic propagation rules in complex media. As a numerical simulation method, boundary element methods had been widely used in seismic wave field study. This paper mainly studies randomly rough surface scattering which used some approximation solutions based on boundary element method. In addition, I developed a boundary element solution for fluid saturated porous media. In this paper, we used boundary element methods which based on integral expression of wave equation to study the free rough surface scattering effects of Kirchhoff approximation method, Perturbation approximation method, Rytov approximation method and Born series approximation method. Gaussian spectrum model of randomly rough surfaces was chosen as the benchmark model. The approximation methods result were compared with exact results which obtained by boundary element methods, we study that the above approximation methods were applicable how rough surfaces and it is founded that this depends on and ( here is the wavenumber of the incident field, is the RMS height and is the surface correlation length ). In general, Kirchhoff approximation which ignores multiple scatterings between any two surface points has been considered valid for the large-scale roughness components. Perturbation theory based on Taylor series expansion is valid for the small-scale roughness components, as and are .Tests with the Gaussian topographies show that the Rytov approximation methods improves the Kirchhoff approximation in both amplitude and phase but at the cost of an extra treatment of transformation for the wave fields. The realistic methods for the multiscale surfaces come with the Born series approximation and the second-order Born series approximation might be sufficient to guarantee the accuracy of randomly rough surfaces. It could be an appropriate choice that a complex rough surface can be divided into large-, medium-, and small-scale roughness components with their scattering features be studied by the Kirchhoff or Rytov phase approximations, the Born series approximation, and the perturbation theory, respectively. For this purpose, it is important to select appropriate parameters that separate these different scale roughness components to guarantee the divided surfaces satisfy the physical assumptions of the used approximations, respectively. In addition, in this paper, the boundary element methods are used for solving the porous elastic wave propagation and carry out the numerical simulation. Based on the fluid-saturated porous model, this paper analyses and presents the dynamic equation of elastic wave propagation and boundary integral equation formulation of fluid saturated porous media in frequency domain. The fundamental solutions of the elastic wave equations are obtained according to the similarity between thermoelasticity and poroelasticity. At last, the numerical simulation of the elastic wave propagation in the two-phase isotropic media is carried out by using the boundary element method. The results show that a slow quasi P-wave can be seen in both solid and fluid wave-field synthetic seismograms. The boundary element method is effective and feasible.
Resumo:
Specklegram in multimode fiber has successfully been used as a sensor for detecting mechanical disturbance. Speckles in a multimode pure silica grapefruit fiber are observed and compared to that of a step-index multimode fiber, showing different features between them. The sensitivities to external disturbance of two kinds of fiber were measured, based on single-multiple-single mode (SMS) fiber structure. Experimental results show that the grapefruit fiber shows higher sensitivity than does the step-index multimode fiber. The transmission spectrum of the grapefruit fiber was measured as well, showing some oscillation features that are significantly different from that of a step-index multimode fiber. The experiments may provide suggestions to understand the mechanisms of light propagation in grapefruit fibers. (D 2008 Optical Society of America.
Resumo:
A new method to test the hole concentration of p-type GaN is proposed, which is carried out by analyzing the spectral response of p-n(+) structure GaN ultraviolet photodetector. It is shown that the spectral response of the photodetector changes considerably with reversed bias. It is found that the difference between photodetector's quantum efficiency at two wavelengths, i.e. 250 and 361 nm, varies remarkably with increasing reversed bias. According to the simulation calculation, the most characteristic change occurs at a reversed voltage under which the p-GaN layer starts to be completely depleted. Based on this effect the carrier concentration of p-GaN can be derived.
Resumo:
We have calculated the photoelectric response in a specially designed double barrier structure. It has been verilied that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.
Resumo:
We report the photocurrent response in a double barrier structure with quantum dots-quantum well inserted in central well. When this quantum dots-quantum well hybrid heterostructure is biased beyond + 1 or -I V, the photocurrent response manifests itself as a steplike enhancement, increasing linearly with the light intensity. Most probably, at proper bias condition, the pulling down of the X minimum of GaAs at the outgoing interface of the emitter barrier by the photovoltaic effect in GaAs QW will initiate the r,-X-X tunneling at much lower bias as compared with that in the dark. That gives rise to the observed photocurrent response. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the simulation of two 2 x 2 electrooptical switches with different modulation area structures in silicon-on-insulator (SOI). A two-dimensional (2D) semiconductor device simulation tool PISCES-II has been used to analyze the dc and transient behaviors of the two devices. The modeling results show that the switch with an N+-I-P+-I-N+ modulation structure has a much faster response speed than the device with a P+-I-N+ modulation structure, although the former requires slightly stronger injection power.
Resumo:
MEP is a member of thioester-containing protein (TEP) family found in Zhikong scallop Chlamys farreri and is involved in innate immunity against invading microbes. In the present study, the genomic DNA of CfTEP was cloned and characterized. The genomic DNA sequence of CfTEP consisted of 40 exons and 39 introns spanning 35 kb with all exon-intron junction sequences agreeing with the GT/AG consensus. The genomic organization of CfTEP was similar to human and mouse 0 rather than ciona C3-1 and Drosophila dTEP2. By RT-PCR technique, seven different cDNA variants of CfTEP (designated as CfTEP-A-CfTEP-G) were cloned from scallop gonad. CfTEP-A-CfTEP-F were produced by alternative splicing of six mutually exclusive exons (exons 19-24), respectively, which encoded the highly variable central region. While in CfTEP-G, the deletion of all the six exons introduced a new translation stop site and might trigger nonsense mediated decay (NMD). The mRNA expression and the proportion of the seven CfTEP variant transcripts were examined in the gonad of scallops after bacterial challenge. The fragments containing the highly variable central region of UTEP were amplified by RT-PCR and a 100 positive clones were sequenced randomly. The expression profiles of the seven MEP variants were different and displayed the sex and bacteria dependent manner. In the blank, sea water and Listonella anguillarum challenged subgroups of male scallops, all the transcripts detected were CfTEP-G isoform. In the Micrococcus luteus challenged subgroup, the isoforms expressed and their proportions were CfTEP-F (54%), CfTEP-B (23%), CfTEP-A (10%), CfTEP-C (7%) and CfTEP-E (6%). However, in the gonad of female scallops, only CfTEP-A were found in blank and sea water challenged subgroups. After L anguillarum or M. luteus challenge, four and five isoforms were detected, respectively, with CfTEP-F isoform being the most one in the both subgroups. These results suggested that the evolution of TEP genes was very complex, and that the diverse CfTEP transcripts generated by alternative splicing played an important role as pattern recognition receptors in the innate immune defense of scallops. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The relationship is determined between saturated duration of rectangular pressure pulses applied to rigid, perfectly plastic structures and their fundamental periods of elastic vibration. It is shown that the ratio between the saturated duration and the fundamental period of elastic vibration of a structure is dependent upon two factors: the first one is the slenderness or thinness ratio of the structure; and the second one is the square root of ratio between the Young's elastic modulus and the yield stress of the structural material. Dimensional analysis shows that the aforementioned ratio is one of the basic similarity parameters for elastic-plastic modeling under dynamic loading.
Resumo:
A dimensionless number, termed response number in the present paper, is suggested for the dynamic plastic response of beams and plates made of rigid-perfectly plastic materials subjected to dynamic loading. It is obtained at dimensional reduction of the basic governing equations of beams and plates. The number is defined as the product of the Johnson's damage number and the square of the half of the slenderness ratio for a beam; the product of the damage number and the square of the half of the aspect ratio for a plate or membrane loaded dynamically. Response number can also be considered as the ratio of the inertia force at the impulsive loading to the plastic limit load of the structure. Three aspects are reflected in this dimensionless number: the inertia of the applied dynamic loading, the resistance ability of the material to the deformation caused by the loading and the geometrical influence of the structure on the dynamic response. For an impulsively loaded beam or plate, the final dimensionless deflection is solely dependent upon the response number. When the secondary effects of finite deflections, strain-rate sensitivity or transverse shear are taken into account, the response number is as useful as in the case of simple bending theory. Finally, the number is not only suitable to idealized dynamic loads but also applicable to dynamic loads of general shape.
Resumo:
The response of porous Al2O3 to nanoindentation was investigated at microscopic scales (nm-mu m) and under ultra-low loads from 5 to 90 mN with special attention paid to the dependence of the load-depth behaviour to sample porosity. It was found that the load-depth curves manifest local responses typical of the various porous structures investigated. This is particularly clear for the residual deformation after load removal. Similarly, the limited mean pressure of the sample containing small grains and interconnected pores is consistent with its porous structure. By comparison, the samples with larger grain size and various porous structures exhibit higher pressures and smaller residual deformations that can be attributed to the mechanical response of the solid phase. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Tension Leg Platform (TLP) is a typical compliant offshore structure for oil exploitation in deep water. Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that displacements (translations and rotations) are small magnitude. Herein a theoretical method for analyzing the nonlinear dynamic behavior of TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e. finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Using this theoretical model, we perform the numerical analysis of dynamic response of a representative TLP. The comparison between the degenerative linear solution of the proposed nonlinear model and the published one shows good agreements. Furthermore, numerical results are presented which illustrate that nonlinearities exert a distinct influence on the dynamic responses of the TLP.
Resumo:
The response of porous Al2O3 to nanoindentation was investigated at microscopic scales (nm-mu m) and under ultra-low loads from 5 to 90 mN with special attention paid to the dependence of the load-depth behaviour to sample porosity. It was found that the load-depth curves manifest local responses typical of the various porous structures investigated. This is particularly clear for the residual deformation after load removal. Similarly, the limited mean pressure of the sample containing small grains and interconnected pores is consistent with its porous structure. By comparison, the samples with larger grain size and various porous structures exhibit higher pressures and smaller residual deformations that can be attributed to the mechanical response of the solid phase. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.
Resumo:
A Nonlinear Fluid Damping (NFD) in the form of the square-velocity is applied in the response analysis of Vortex-induced Vibrations (VIV). Its nonlinear hydrodynamic effects oil the coupled wake and structure oscillators are investigated. A comparison between the coupled systems with the linear and nonlinear fluid dampings and experiments shows that the NFD model can well describe response characteristics, such as the amplification of body displacement at lock-in and frequency lock-ill, both at high and low mass ratios. Particularly, the predicted peak amplitude of the body in the Griffin plot is ill good agreement with experimental data and empirical equation, indicating the significant effect of the NFD on the structure motion.
Resumo:
To study working mechanism of super-resolution near-field structure (super-RENS) optical disk from a far-field optics view is very necessary because of the actual far-field writing/readout process in the optical disk system. A Gaussian diffraction model based on Fresnel-Kirchhoff diffraction theory of PtOx-type super-RENS has been set up in this Letter. The relationship between micro-structural deformation (change of bubble structure and refractive index profile) with far-field optical response of PtOx thin film has been studied with it in detail. The simulation results are in good agreement with the experimental results reported in literatures with a designed configuration. These results may provide more quantitative information for better understanding of the working mechanism of metal-oxide-type super-RENS. (c) 2007 Elsevier B.V. All rights reserved.