13 resultados para Shaker K Channel

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The origin of the flat band voltage roll-off (V-FB roll-off) in metal gate/high-k/ultrathin-SiO2/Si metal-oxide-semiconductor stacks is analyzed and a model describing the role of the dipoles at the SiO2/Si interface on the V-FB sharp roll-off is proposed. The V-FB sharp roll-off appears when the thickness of the SiO2 interlayer diminishes to below the oxygen diffusion depth. The results derived using our model agree well with experimental data and provide insights to the mechanism of the V-FB sharp roll-off.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diffusive wave equation with inhomogeneous terms representing hydraulics with uniform or concentrated lateral inflow intoa river is theoretically investigated in the current paper. All the solutions have been systematically expressed in a unified form interms of response function or so called K-function. The integration of K-function obtained by using Laplace transform becomesS-function, which is examined in detail to improve the understanding of flood routing characters. The backwater effects usuallyresulting in the discharge reductions and water surface elevations upstream due to both the downstream boundary and lateral infloware analyzed. With a pulse discharge in upstream boundary inflow, downstream boundary outflow and lateral inflow respectively,hydrographs of a channel are routed by using the S-functions. Moreover, the comparisons of hydrographs in infinite, semi-infiniteand finite channels are pursued to exhibit the different backwater effects due to a concentrated lateral inflow for various channeltypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon-on-insulator (SOI) substrate is widely used in micro-electro-mechanical systems (MEMS). With the buried oxide layer of SOI acting as an etching stop, silicon based micro neural probe can be fabricated with improved uniformity and manufacturability. A seven-record-site neural probe was formed by inductive-coupled plasma (ICP) dry etching of an SOI substrate. The thickness of the probe is 15 mu m. The shaft of the probe has dimensions of 3 mmx100 mu mx15 mu m with typical area of the record site of 78.5 mu m(2). The impedance of the record site was measured in-vitro. The typical impedance characteristics of the record sites are around 2 M Omega at 1 kHz. The performance of the neural probe in-vivo was tested on anesthetic rat. The recorded neural spike was typically around 140 mu V. Spike from individual site could exceed 700 mu V. The average signal noise ratio was 7 or more.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetotransport properties of In-0.53 GaAs/In-0.52 AlAs high electron mobility transistor (HEMT) structures with different channel thickness of 10-35 nm have been investigated in magnetic fields up to 13 T at 1.4 K. Fast Fourier transform has been employed to obtain the subband density and mobility of the two-dimensional electron gas in these HEMT structures. We found that the thickness of channel does not significantly enhance the electron density of the two-dimensional electron gas, however, it has strong effect on the proportion of electrons inhabited in different subbands. When the size of channel is 20 nm, the number of electrons occupying the excited subband, which have higher mobility, reaches the maximum. The experimental values obtained in this work are useful for the design and optimization of InGaAs/InAlAs HEMT devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-quality InGaAs/InAlAs/InP high-electron-mobility transistor (HEMT) structures with lattice-matched or pseudomorphic channels have been grown by molecular-beam epitaxy (MBE). The purpose of this work is to enhance the channel conductivity by changing the epitaxial structure and growth process. With the use of pseudomorphic step quantum-well channel, the highest channel conductivity is achieved at x = 0.7, the corresponding electron mobilities are as high as 12300 (300 K) and 61000 cm(2)/V.s (77 K) with two-dimensional electron gas (2DEG) density of 3.3 x 10(12) cm(-2). These structures are comprehensively characterized by Hall measurements, photoluminescence, double crystal X-ray diffraction and transmission electron microscopy. Strong room-temperature luminescence is observed, demonstrating the high optical quality of the samples. We also show that decreasing the In composition in the InyAl1-yAs spacer is very effective to increase the 2DEG density of PHEMT structures. (C) 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extracellular neural recording requires neural probes having more recording sites as well as limited volumes. With its mechanical characteristic and abundant process method, Silicon is a kind of material fit for producing neural probe. Silicon on insulator (SOI) is adopted in this paper to fabricate neural probes. The uniformity and manufacturability are improved. The fabricating process and testing results of a series of Multi channel micro neural probes were reported. The thickness of the probe is 15 mu m-30 mu m. The typical impedance characteristics of the record sites are around 2M Omega at 1k Hz. The performance of the neural probe in-vivo was tested on anesthetic rat. The recorded neural spike was typically around 140 mu V. Spike recorded from individual site could exceed 700 mu V. The average signal noise ratio was 7 or more.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mobility of channel electron, for partially depleted Sol nMOSFET in this paper, decreases with the increase of implanted fluorine dose in buried oxide layer. But, the experimental results also show that it is larger for the transistor corresponding to the lowest implantation dose than no implanted fluorine in buried layer. It is explained in tern-is of a "lubricant" model. Mien fluorine atoms are implanted in the top silicon layer, the mobility is the largest. In addition, a positive shift of threshold voltage has also been observed for the transistors fabricated on the Sol wafers processed by the implantation of fluorine. The causes of all the above results are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ã

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper reports the channel behavior of gramicidin in mercaptan self-assembled monolayer on the surface of the gold electrode by using the electrochemical method. The current responses to K+ ions and the electrode potential for the gold electrodes modified with self-assembled mercaptan monolayer incorporating and not incorporating gramicidin D were compared. The results firstly indicated that gramicidin D molecules can be incorporated into the mercaptan monolayer assembled on the surface of the gold electrode and form monovalent ion channel. A mechanism of the phenomenon was proposed.