29 resultados para Portable architecture. Reassemblable structure. Design process
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, the cellular structure of a two-dimensional detonation wave in a low pressure H2/O2/Ar mixture calculated with a detailed chemical reaction model, high order scheme and high resolution grids is investigated. The regular cellular structure is produced about 1 ms after introducing perturbations in the reaction zone of a steady one-dimensional detonation wave. It is found from the present resolution study that the discrepancies concerning the structure type arising from the coarser grid employed can be resolved using a sufficiently fine grid size of 0.05 mm and below and shows a double-Mach-like strong-type configuration. During the structure evolution process, the structure configuration does not change much in the periods before and after the triple point collision. Through the triple point collision, three regular collision processes are observed and are followed by a quick change to the double-Mach-like configuration. The simulated structure tracks show that there are three different tracks associated with different triple points or the kink on the transverse wave. Comparisons with previous work and experiments indicate the presence of a strong structure for an ordinary detonation.
Resumo:
This paper reports on two-dimensional numerical simulation of cellular detonation wave in a / / mixture with low initial pressure using a detailed chemical reaction model and high order WENO scheme. Before the final equilibrium structure is produced, a fairly regular but still non-equilibrium mode is observed during the early stage of structure formation process. The numerically tracked detonation cells show that the cell size always adapts to the channel height such that the cell ratio is fairly independent of the grid sizes and initial and boundary conditions. During the structural evolution in a detonation cell, even as the simulated detonation wave characteristics suggest the presence of an ordinary detonation, the evolving instantaneous detonation state indicates a mainly underdriven state. As a considerable region of the gas mixture in a cell is observed to be ignited by the incident wave and transverse wave, it is further suggested that these two said waves play an essential role in the detonation propagation.
Resumo:
A 7.8-mu m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm(-1). Using a pi phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.
Resumo:
A novel asymmetric broad waveguide diode laser structure was designed for high power conversion efficiency (PCE). The internal quantum efficiency, the series resistance, and the thermal resistance were theoretically optimized. The series resistance and the thermal resistance were greatly decreased by optimizing the thickness of the P-waveguide and the P-cladding layers. The internal quantum efficiency was increased by introducing a novel strain-compensated GaAs_0.9P_0.1/InGaAs quantum well. Experimentally, a single 1-cm bar with 20% fill factor and 900 μm cavity length was mounted P-side down on a microchannel-cooled heatsink, and a peak PCE of 60% is obtained at 26.3-W continuous wave output power.The results prove that this novel asymmetric waveguide structure design is an efficient approach to improve the PCE.
Resumo:
An advanced superconducting ECR ion source named SECRAL has been constructed at Institute of Modern Physics of Chinese Academy of Sciences, whose superconducting magnet assembly consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamp. In order to investigate the structure of sextupole coils and to increase the structural reliabilities of the magnet system, global and local structural analysis have been performed in various operation scenarios. Winding pack and support structure design of magnet system, mechanical calculation and stress analysis are given in this paper. From the analysis results, it has been found that the magnet system is safe in the referential operation scenarios and the configuration of the magnet complies with design requirements of the SECRAL.
Resumo:
阐述内建自检测(BIST)技术的特点、结构和原理,并介绍其在Memory单元电路中的实现过程。
Resumo:
针对钢丝绳实际生产需要,提出基于钢丝绳结构理论设计基础的结构与工艺集成设计系统框架,建立钢丝绳结构设计、性能分析及间隙计算的理论模型,并利用相关数据进行理论值与实际值分析,完成钢丝绳性能参数的敏感性分析模型和理论修正模型,为钢丝绳结构设计与工艺设计的并行处理提供了理论上的指导,最终实现钢丝绳的智能设计与制造
Resumo:
The original scanner for tilting orthogonal double prisms is studied to test the tracking performance in intersatellite laser communications. With a reduction ratio of more than 100 times from the change rate of the angle of beam deviation to that of the tilting angle of each prism, the theoretical analysis performed, as well as the verification experiment, indicates that the scanner can meet the requirements of the scanning accuracy superior to 0.5 mu rad with the scanning range greater than 500 mu rad and can facilitate the mechanical structure design. (c) 2006 Optical Society of America.
Resumo:
控制由机械装夹方式所引入的波前畸变以提高惯性约束聚变(ICF)输出光束的质量,是在大口径钕玻璃片主放大器结构设计中必须考虑的。提出了一种新的有限元变形结果与光学元件面形畸变之间的数据处理方式,并与传统方式进行了对比。基于新的数据处理接口,利用光机集成分析方法对大口径八边形钕玻璃片的支撑系统结构设计参数进行优化。优化的结果保证了由支撑系统引起的透过波前畸变小于十分之一波长,同时波前畸变与设计参数变动的相关性最小。
Resumo:
We investigate the molecular beam epitaxy growth of metamorphic InxGa(1-x)As materials (x up to 0.5) on GaAs substrates systematically. Optimization of structure design and growth parameters is aimed at obtaining smooth surface and high optical quality. The optimized structures have an average surface roughness of 0.9-1.8 nm. It is also proven by PL measurements that the optical properties of high indium content (55%) InGaAs quantum wells are improved apparently by defect reduction technique and by introducing Sb as a surfactant. These provide us new ways for growing device quality metamorphic structures on GaAs substrates with long-wavelength emissions.
Resumo:
Spin splitting of the AlyGa1-yAs/GaAs/AlxGa1-xAs/AlyGa1-yAs (x not equal y) step quantum wells (QWs) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field.
Resumo:
This paper describes the design process and performance of the optimized parallel optical transmission module. Based on 1x12 VCSEL (Vertical Cavity Surface Emitting Laser) array, we designed and fabricated the high speed parallel optical modules. Our parallel optical module contains a 1x12 VCSEL array, a 12 channel CMOS laser driver circuit, a high speed PCB (Printed Circuit Board), a MT fiber connector and a packaging housing. The L-I-V characteristics of the 850nm VCSEL was measured at the operating current 8mA, 3dB frequency bandwidth more than 3GHz and the optical output 1mW. The transmission rate of all 12 channels is 30Gbit/s, with a single channel 2.5Gbit/s. By adopting the integration of the 1x12 VCSEL array and the driver array, we make a high speed PCB (Printed Circuit Board) to provide the optoelectronic chip with the operating voltage and high speed signals current. The LVDS (Low-Voltage Differential Signals) was set as the input signal to achieve better high frequency performance. The active coupling was adopted with a MT connector (8 degrees slant fiber array). We used the Small Form Factor Pluggable (SFP) packaging. With the edge connector, the module could be inserted into the system dispense with bonding process.
Resumo:
We present a strain-compensated InP-based InGaAs/InAlAs photovoltaic quantum cascade detector grown by solid source molecular beam epitaxy. The detector is based on a vertical intersubband transition and electron transfer on a cascade of quantum levels which is designed to provide longitudinal optical phonon extraction stairs. By careful structure design and growth, the whole epilayer has a residual strain toward InP substrate of only -2.8 x 10(-4). A clear narrow band detection spectrum centered at 4.5 mu m has been observed above room temperature for a device with 200 x 200 mu m(2) square mesa.
Resumo:
A 1.3μm GaInNAs resonant cavity enhanced (RCE) photodetector (PD) has been grown by molecular beam epitaxy (MBE) monolithically on (100) GaAs substrate using a home-made ion-removed dc-plasma cell as nitrogen source. A transfer matrix method was used to optimize the device structure. The absorption region is composed of three GaInNAs quantum wells separated by GaAs layers. Devices were isolated by etching 130μm-diameter mesas and filling polyamide into grooves. The maximal quantum efficiency of the device is about 12% at 1.293μm. Full width at half maximum (FWHM) is 5.8nm and 3dB bandwidth is 304MHz. Dark current is 2 * 10~(-11) A at zero bias voltage. Further improvement of the performance of the RCE PD can be obtained by optimizing of the structure design and MBE growth conditions.