40 resultados para Industrial technologies

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An industrial scale dehydration process based on hollow fiber membranes for lowering the dew point of natural gas is described in this paper. A pilot test with the feed flux scale of 12x10(4) Nm(3)/d was carried out. Dew points of -8 degreesC-13 degreesC at a gas transport pressure in the pipeline of 4.6M Pa and methane recovery of more than 98% were attained. The water vapor content of the product gas could be maintained around 0.01 vol% during a continuous run of about 700 hours. The effects of feed flux and operation pressure on methane recovery and water vapor content were also investigated. Additionally, some auxiliary technologies, such as a full-time engine using natural gas as fuel and the utilization of vent gas in the process, are also discussed. A small amount of the vent gas from the system was used as a fuel for an engine to drive vacuum pumps, and the heat expelled from the engine was used to warm up the natural gas feed. The whole system can be operated in a self-sustainable manner from an energy point of view, and has a relatively high efficiency in the utilization of natural gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

表面技术能够显著提高材料功能而成为工程和产品设计的重要组成部分, 但前提是表面技术必须具有可设计性。为此, 需要开拓和发展表面组合加工技术, 进行创新。该技术的内涵体现了新材料与新技术、基础研究与产业化有机结合的特点, 具有重要的价值和广阔的前景。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaporative convection and instability give rise to both scientific and technological interests. Practically, a number of the industrial applications such as thin-film evaporators, boiling technologies and heat pipes concern with the evaporation process of which through the vapor-liquid interface the heat and mass transfer occur. From a physical viewpoint, one of interesting questions is the mechanisms of convection instability in thin-liquid layers induced by the coupling of evaporation phenomenon and Marangoni effect at the mass exchanged interface. Classical theories, including Rayleigh’s and Pearson’s, have only successfully explained convection in a liquid layer heated from below without evaporation. However these theories are unable to explain the convection in an evaporating thin layer, especially liquid layer is cooled from below. In present paper, a new two-sided model is put forward rather than the one-sided model in previous works. In previous works, the vapor is treated as passive gas and dynamics of vapor has been ignored. In this case, the vapor liquid system can be described by one-sided model. In our two-sided model, the dynamics of vapor should be considered. Linear instability analysis of the Marangoni-Bénard convection in the two-layer system with an evaporation interface is performed. We define a new evaporating Biot number which is different from the Biot number in one-sided model and obtain the curves of critical Marangoni number versus wave number. In our theoretical results, the Biot number and the evaporating velocity play a major role in the stability of the vapor-liquid system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Czochralski (CZ) crystal growth process is a widely used technique in manufacturing of silicon crystals and other semiconductor materials. The ultimate goal of the IC industry is to have the highest quality substrates, which are free of point defect, impurities and micro defect clusters. The scale up of silicon wafer size from 200 mm to 300 mm requires large crucible size and more heat power. Transport phenomena in crystal growth processes are quite complex due to melt and gas flows that may be oscillatory and/or turbulent, coupled convection and radiation, impurities and dopant distributions, unsteady kinetics of the growth process, melt crystal interface dynamics, free surface and meniscus, stoichiometry in the case of compound materials. A global model has been developed to simulate the temperature distribution and melt flow in an 8-inch system. The present program features the fluid convection, magnetohydrodynamics, and radiation models. A multi-zone method is used to divide the Cz system into different zones, e.g., the melt, the crystal and the hot zone. For calculation of temperature distribution, the whole system inside the stainless chamber is considered. For the convective flow, only the melt is considered. The widely used zonal method divides the surface of the radiation enclosure into a number of zones, which has a uniform distribution of temperature, radiative properties and composition. The integro-differential equations for the radiative heat transfer are solved using the matrix inversion technique. The zonal method for radiative heat transfer is used in the growth chamber, which is confined by crystal surface, melt surface, heat shield, and pull chamber. Free surface and crystal/melt interface are tracked using adaptive grid generation. The competition between the thermocapillary convection induced by non-uniform temperature distributions on the free surface and the forced convection by the rotation of the crystal determines the interface shape, dopant distribution, and striation pattern. The temperature gradients on the free surface are influenced by the effects of the thermocapillary force on the free surface and the rotation of the crystal and the crucible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quadratic optical nonlinearity chi((2)) can be exploited in femtosecond lasers and regarded as a significant new degree of freedom for the design of short-pulse sources. We will review our recent progress on developing nonlinear quadratic technologies for femtosecond lasers. Our nonlinear laser technology offers new properties for femtosecond lasers, including optical parametric amplifier with novel working regime, efficient second harmonic generation, and time telescope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

现代制造业对双频激光干涉仪的最大可测量速度提出了越来越高的要求。最大可测量速度是双频激光干涉仪的一项重要指标,它主要受双频激光光源所输出的频差、干涉仪的光学结构以及电子带宽等因素的限制。本文从理论和实验两方面对干涉仪的最大可测量速度进行了研究,搭建了基于自由落体运动的实验装置。实验结果表明,实际最大可测量速度略低于其理论值。另外,文中还分析了上述三种因素对最大可测量速度的影响。实验装置和结果可供工业应用提供参考。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials, which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper, we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For enhancing the output efficiency of GaN light-emitting diode(LED), we calculated the band structure of photonic crystal(PhC), and designed and fabricated several novel GaN LEDs with photonic crystal on Indium-Tin-Oxide(ITO), which as p-type transparent contact of GaN LED. In this fabricating process, we developed conventional techniques in order that these methods can be easily applied to industrial volume-production. And we have done some preliminary experiments and obtained some results.