87 resultados para Evolved gas analysis

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

本论文对草地群落地上/地下生物量构成、根冠比特征及其影响因子以及土壤呼吸测定方法比较等的国内外研究进展和主要成果进行了综述,在此基础之上对地处我国北方农牧交错带中段的内蒙古多伦县境内的18种草地群落(包括天然草地和人工草地群落)进行了相关内容的研究工作。 在2002年生长季期间,对这18个植物群落中选取的16个进行了群落学调查,测定了其地上、地下生物量,同时测定了土壤含水量、土壤容重、土壤全氮含量和土壤有机质含量。分别分析了地上、地下生物量以及根冠比(root to shoot ratio)与这些立地因子间的相关关系。同期,从18个群落中选定10个代表性群落测定其土壤呼吸速率,测定方法选用了动态红外气体分析法 (Infra red gas analysis, abbreviated as IRGA)和碱液吸收法(Alkali absorption, abbreviated as AA)。对这两种方法的测定结果进行了比较分析,同时分析了不同群落间土壤呼吸变化与土壤水分和养分状况等的相关关系。主要结论如下: ①16种植物群落的地上和地下生物量差异明显,地上生物量变化范围在80~500 g•m-2之间;相比之下,地下生物量的变化范围要大得多,16个群落中地下生物量最小的为猪毛菜群落,最大的为拂子茅群落,分别为533 g•m-2和2590 g•m-2。群落的根冠比在1.5~11.21之间,平均根冠比为 5.69。 ②土壤含水量对地上和地下生物量有着重要的影响,土壤含水量高的样地(羊草样地)较含水量低(小米蒿样地)的样地地上生物量高,反之亦然。但含水量与地下生物量之间的这种关系却不明显,即土壤含水量高的样地其地下生物量并不一定比含水量低的样地地下生物量高;根冠比与土壤含水量之间基本上呈负相关。土壤全氮含量和有机质含量与地上、地下生物量也存在着一定的正相关关系,而土壤容重却与生物量存有负相关关系;根冠比与土壤全氮、有机质和容重的关系正好与此相反,即根冠比与全氮和有机质含量呈负相关,与容重为正相关。 ③10种植物群落土壤呼吸的昼夜变化比较明显,均为单峰型曲线,主要受土壤温度的驱动,但同时也受到当日降水情况和云量、风速等气象因子的较大影响。因此,影响到这些群落土壤呼吸日动态的一致性,使得规律性并不明显。 ④用碱液吸收法和动态密闭气室法测定的10个群落的土壤呼吸速率变化范围分别为394~894mg C•m-2•d-1和313~2043 mg C•m-2•d-1,其中碱液吸收法测定结果平均为动态气室法的67.5%,明显低于动态密闭气室法。 ⑤两种测定方法具有很好的相关性,R2为0.8739。本研究中发现,在土壤呼吸速率低的情况下,两种方法的测定结果十分接近,甚至碱液吸收法的测定结果稍大于动态密闭气室法;而在土壤呼吸速率较高的情况下,动态密闭气室法测定结果则显著高于碱液吸收法。上述结果与国内外同类研究的结果高度一致,从而为校正我们以往采用碱液吸收法在该区域的测定结果提供了可靠依据。 ⑥各个群落间的土壤呼吸变化与立地土壤水分和土壤养分之间存有一定的相关关系,但并不显著,可能与这些群落土壤呼吸测定不是在同一天进行有关。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research is to design a differential pumping system not only to achieve the pressure transition with a large throughput, but also to achieve a clean system without back-oil. In the paper, the pressure in differential stages is calculated; the differential pumping system design and equipment choice are introduced; the tests of Molecular/Booster Pump (MBP), a new kind of molecular-drag pump with large throughout and clean vacuum are described and the system experimental result and analysis are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chlorination reaction of Li2CO3 with NH4Cl has been studied in detail by a series of thermal analysis methods. When NH4Cl/Li2CO3 mole ratio equals 4, Li2CO3 can be transformed into LiCl quantitatively in a stream of Ar gas flow. All residual NH4Cl is decomposed completely at 400 degrees C and carried away from the reaction cell by Ar gas.Analysis by X-Ray diffraction and Ion Chromatography show that there are almost no NH4Cl remained in The LiCl product. It is interested that the chlorination reaction can be applied to the determinations of phase diagram by thermal analysis method and the preparation of Al-Li alloy by electrolysis in molten salt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Natural gas pays more important role in the society as clean fuel. Natural gas exploration has been enhanced in recent years in many countries. It also has prospective future in our country through "85" and "95" national research. Many big size gas fields have been discovered in different formations in different basins such as lower and upper Paleozoic in Erdos basin, Tertiary system in Kuche depression in Tarim basin, Triassic system in east of Sichuan basin. Because gas bearing basins had been experienced multiple tectogenesis. The characteristics of natural gases usually in one gas field are that they have multiple source rocks and are multiple maturities and formed in different ages. There has most difficult to research on the gas-rock correlation and mechanism of gas formation. Develop advanced techniques and methods and apply them to solve above problems is necessary. The research is focused on the critical techniques of geochemistry and physical simulation of gas-rock correlation and gas formation. The lists in the following are conclusions through research and lots of experiments. I 8 advanced techniques have been developed or improved about gas-rock correlation and gas migration, accumulation and formation. A series of geochemistry techniques has been developed about analyzing inclusion enclave. They are analyzing gas and liquid composition and biomarker and on-line individual carbon isotope composition in inclusion enclave. These techniques combing the inclusion homogeneous temperature can be applied to study on gas-rock correlation directly and gas migration, filling and formation ages. Technique of on-line determination individual gas carbon isotope composition in kerogen and bitumen thermal pyrolysis is developed. It is applied to determine the source of natural is kerogen thermal degradation or oil pyrolysis. Method of on-line determination individual gas carbon isotope composition in rock thermal simulation has being improved. Based on the "95"former research, on-line determination individual gas carbon isotope composition in different type of maceral and rocks thermal pyrolys is has been determined. The conclusion is that carbon isotope composition of benzene and toluene in homogenous texture kerogen thermal degradation is almost same at different maturity. By comparison, that in mixture type kerogen thermal pyrolysis jumps from step to step with the changes of maturity. This conclusion is a good proof of gas-rock dynamic correlation. 3. Biomarker of rock can be determined directly through research. It solves the problems such as long period preparing sample, light composition losing and sample contamination etc. It can be applied to research the character of source rock and mechanism of source rock expulsion and the path of hydrocarbon migration etc. 4. The process of hydrocarbon dynamic generation in source rock can be seen at every stage applying locating observation and thermal simulation of ESEM. The mechanism of hydrocarbon generation and expulsion in source rock is discussed according to the experiments. This technique is advanced in the world. 5. A sample injection system whose character is higher vacuum, lower leaks and lower blank has been built up to analyze inert gas. He,Ar,Kr and Xe can be determined continuously on one instrument and one injection. This is advanced in domestic. 7. Quality and quantity analysis of benzene ring compounds and phenolic compounds and determination of organic acid and aqueous gas analysis are applied to research the relationship between compounds in formation water and gas formation. This is another new idea to study the gas-rock correlation and gas formation. 8. Inclusion analysis data can be used to calculate the Paleo-fluid density, Paleo-geothermal gradient and Paleo-geopressure gradient and then to calculate the Paleo-fluid potential. It's also a new method to research the direction of hydrocarbon migration and accumulation. 9. Equipment of natural gas formation simulation is produced during the research to probe how the physical properties of rock affect the gas migration and accumulation and what efficiency of gas migrate and factors of gas formation and the models of different type of migration are. II study is focused on that if the source rocks of lower Paleozoic generated hydrocarbon and what the source rocks of weathered formation gas pool and the mechanism of gas formation are though many advanced techniques application. There are four conclusions. 1.The maturity of Majiagou formation source rocks is higher in south than that in north. There also have parts of the higher maturity in middle and east. Anomalous thermal pays important role in big size field formation in middle of basin. 2. The amount of gas generation in high-over maturity source rocks in lower Paleozoic is lager than that of most absorption of source rocks. Lower Paleozoic source rocks are effective source rocks. Universal bitumen exists in Ordovician source rocks to prove that Ordovician source rocks had generated hydrocarbon. Bitumen has some attribution to the middle gas pool formation. 3. Comprehensive gas-rock correlation says that natural gases of north, west, south of middle gas field of basin mainly come from lower Paleozoic source rocks. The attribution ratio of lower Paleozoic source rocks is 60%-70%. Natural gases of other areas mainly come from upper Paleozoic. The attribution ratio of upper Paleozoic source rocks is 70%. 4. Paleozoic gases migration phase of Erdos basin are also interesting. The relative abundance of gasoline aromatic is quite low especially toluene that of which is divided by that of methyl-cyclohexane is less than 0.2 in upper Paleozoic gas pool. The migration phase of upper Paleozoic gas may be aqueous phase. By comparison, the relative abundance of gasoline aromatic is higher in lower Paleozoic gas. The distribution character of gasoline gas is similar with that in source rock thermal simulation. The migration phase of it may be free phase. IH Comprehensive gas-rock correlation is also processed in Kuche depression Tarim basin. The mechanism of gas formation is probed and the gas formation model has been built up. Four conclusions list below. 1. Gases in Kuche depression come from Triassic-Jurassic coal-measure source rocks. They are high-over maturity. Comparatively, the highest maturity area is Kelasu, next is Dabei area, Yinan area. 2. Kerogen thermal degradation is main reason of the dry gas in Kuche depression. Small part of dry gas comes from oil pyrolysis. VI 3.The K12 natural gas lays out some of hydro-gas character. Oil dissolved in the gas. Hydro-gas is also a factor making the gas drier and carbon isotope composition heavier. 4. The mechanism and genesis of KL2 gas pool list as below. Overpressure has being existed in Triassic-Jurassic source rocks since Keche period. Natural gases were expulsed by episode style from overpressure source rocks. Hetero-face was main migration style of gas, oil and water at that time. The fluids transferred the pressure of source rocks when they migrated and then separated when they got in reservoir. After that, natural gas migrated up and accumulated and formed with the techno-genesis. Tectonic extrusion made the natural gas overpressure continuously. When the pressure was up to the critical pressure, the C6-C7 composition in natural gas changed. The results were that relative abundance of alkane and aromatic decreased while cycloalkane and isoparaffin increased. There was lots of natural gas filling during every tectonic. The main factors of overpressure of natural gas were tectonic extrusion and fluid transferring pressure of source rocks. Well preservation was also important in the KL2 gas pool formation. The reserves of gas can satisfy the need of pipeline where is from west to east. IV A good idea of natural gas migration and accumulation modeling whose apparent character is real core and formation condition is suggested to model the physical process of gas formation. Following is the modeling results. 1. Modeling results prove that the gas accumulation rule under cap layer and gas fraction on migration path. 2. Natural gas migration as free phase is difficult in dense rock. 3. Natural gases accumulated easily in good physical properties reservoirs where are under the plugging layer. Under the condition of that permeability of rock is more than 1 * 10~(-3)μm~(-1), the more better the physical properties and the more bigger pore of rock, the more easier the gas accumulation in there. On the contrary, natural gas canonly migrate further to accumulate in good physical properties of rock. 4. Natural gas migrate up is different from that down. Under the same situation, the amount of gas migration up is lager than that of gas migration down and the distance of migration up is 3 times as that of migration down. 5. After gas leaks from dense confining layer, the ability of its dynamic plug-back decreased apparently. Gas lost from these arils easily. These confining layer can confine again only after geology condition changes. 6. Water-wetted and capillary-blocking rocks can't block water but gases generally. The result is that water can migrate continuously through blocking rocks but the gases stay under the blocking rocks then form in there. The experiments have proved the formation model of deep basin gas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Liquefied natural gas (LNG) is being developed as a transportation fuel for heavy vehicles such as trucks and transit buses, to lessen the dependency on oil and to reduce greenhouse gas emissions. The LNG stations are properly designed to prevent the venting of natural gas (NG) from LNG tanks, which can cause evaporative greenhouse gas emissions and result in fluctuations of fuel flow and changes of fuel composition. Boil-off is caused by the heat added into the LNG fuel during the storage and fueling. Heat can leak into the LNG fuel through the shell of tank during the storage and through hoses and dispensers during the fueling. Gas from tanks onboard vehicles, when returned to LNG tanks, can add additional heat into the LNG fuel. A thermodynamic and heat transfer model has been developed to analyze different mechanisms of heat leak into the LNG fuel. The evolving of properties and compositions of LNG fuel inside LNG tanks is simulated. The effect of a number of buses fueled each day on the possible total fuel loss rate has been analyzed. It is found that by increasing the number of buses, fueled each day, the total fuel loss rate can be reduced significantly. It is proposed that an electric generator be used to consume the boil-off gas or a liquefier be used to re-liquefy the boiloff gas to reduce the tank pressure and eliminate fuel losses. These approaches can prevent boil-off of natural gas emissions, and reduce the costs of LNG as transportation fuel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A chemical oxygen iodine laser (COIL) that operates without primary buffer gas has become a new way of facilitating the compact integration of laser systems. To clarify the properties of spatial gain distribution, three-dimensional (3-D) computational fluid dynamics (CFD) technology was used to study the mixing and reactive flow in a COIL nozzle with an interleaving jet configuration in the supersonic section. The results show that the molecular iodine fraction in the secondary flow has a notable effect on the spatial distribution of the small signal gain. The rich iodine condition produces some negative gain regions along the jet trajectory, while the lean iodine condition slows down the development of the gain in the streamwise direction. It is also found that the new configuration of an interleaving jet helps form a reasonable gain field under appropriate operation conditions. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sequences of mitochondrial cytochrome b gene of cyprinid subfamily Leuciscinae are analyzed. Phylogenetic trees generated with methods of neighbor-joining, maximum likelihood and maximum parsimony with Phenacogrammus as an outgroup indicate that Leuciscinae is not a monophyletic group but includes two discrete subgroups. The East Asian group of the subfamily Leuciscinae, including the genera Ctenopharyngodon, Elopichthys, Luciobrama, Mylopharyngodon, Ochetobius, and Squaliobarbus, is close to Aristichthys and Hypophthalmichthys, and they form a monophyletic group which is distant from the leuciscine genera in Europe, Siberia and North America, such as Phoxinus, Leuciscus, Abramis, Rutilus, Chondrostoma, Alburnus, Opsopoedus, Lythrurus, and Pimephales. Our study suggests that the diversified East Asian group of the subfamily Leuciscinae should have an independent origination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, both,solid phase microextraction (SPME) and solid phase extraction(SPE) were used to enrich organochlorine compounds in water samples and analyzed by gas chromatography with electron capture detector. The operating conditions of SPME have been studied and different kinds of solid phase were compared. Linear alkybenzene sulfonate(LAS) was added to the samples to investigate its effect on the analysis. The results indicated that polyacrylate was better than other commercial solid phases in extraction of moderated polar organic compounds and the sensitivity of SPME was higher than SPE. LAS affect much in liquid-liquid extraction and headspace SPME; but it has little effect on SPE and direct-SPME method. The applications showed that SPME was a fast and effective method in sample preparation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Spin-orbit interactions in a two-dimensional electron gas were studied in an InAlAs/InGaAs/InAlAs quantum well. Since weak anti localization effects take place far beyond the diffusive regime, (i.e., the ratio of the characteristic magnetic field, at which the magnetoresistance correction maximum occurs, to the transport magnetic field is more than ten) the experimental data are examined by the Golub theory, which is applicable to both diffusive regime and ballistic regime. Satisfactory fitting lines to the experimental data have been achieved using the Golub theory. In the strong spin-orbit interaction two-dimensional electron gas system, the large spin splitting energy of 6.08 meV is observed mainly due to the high electron concentration in the quantum well. The temperature dependence of the phase-breaking rate is qualitatively in agreement with the theoretical predictions. (C) 2009 The Japan Society of Applied Physics

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The principle of high-electron-mobility transistor (HEMT) and the property of two-dimensional electron gas (2DEG) have been analyzed theoretically. The concentration and distribution of 2DEG in various channel layers are calculated by numerical method. Variation of 2DEG concentration in different subband of the quantum well is discussed in detail. Calculated results show that sheet electron concentration of 2DEG in the channel is affected slightly by the thickness of the channel. But the proportion of electrons inhabited in different subbands can be affected by the thickness of the channel. When the size of channel lies between 20-25 nm, the number of electrons occupying the second subband reaches the maximum. This result can be used in parameter design of materials and devices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.