18 resultados para Event-based timing
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The national science project HIRFL-CSR has recently been officially accepted. As a cyclotron and synchotron complex, it puts some particularly high demands on the control system. There are hundreds of pieces of equipment that need to be synchronized. An integrated timing control system is built to meet these demands. The output rate and the accuracy of the controller are 16 bit/mu s. The accuracy of the time delay reaches 40 ns. The timing control system is based on a typical event distribution system, which adopts the new event generation and the distribution scheme. The scheme of the tuning control system with innovation points, the architecture and the implemented method are presented in the paper.
Resumo:
Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Performing an event-based continuous kinetic Monte Carlo (KMC) simulation, We investigate the growth conditions which are important to form semiconductor quantum dot (QD) in molecular beam epitaxy (MBE) system. The simulation results provide a detailed characterization of the atomic kinetic effects. The KMC simulation is also used to explore the effects of periodic strain to the epitaxy growth of QD. The simulation results are in well qualitative agreement with experiments.
Resumo:
Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
给出了系统的研究模型,指出系统控制和设计必须考虑的3个关键问题:稳定性、透明性和时延处理.阐述了4个主要的稳定性分析方法:Lyapunov稳定性、输入输出稳定性、无源稳定性和基于事件的稳定性,总结了这些方法的优势和局限性.接着,给出了几种主要的控制策略,指出了现有控制方法的优缺点.最后,提出了进一步的主要研究方向.
Resumo:
针对基于网络的智能机器人遥操作系统中人机交互的主要难点和现有方法的不足,结合基于网络的多机器人遥操作系统的特点,应用多模式控制的方法丰富了操作者与机器人系统的交互途径,提高了操作效率.在此基础上,为解决网络时延给多机器人遥操作系统中的人机交互带来的问题,提出了一种带有时间标记的基于事件的方法,在保证系统稳定运行的同时提高了系统的效率和性能.实验证明了所提方法的有效性和优越性.
Resumo:
提出了一种基于数字化的生产模型,使用控制图、故障树分析和专家知识,能够进行制造过程实时监控的诊断,该模型提高了故障诊断系统的可靠性,并提供了可实际操作的可视化建模工具。所开发的在线统计过程控制系统能够根据生产事件的监测,动态响应制造过程变化。该系统运用可视化建模工具,根据专家经验进行故障树建模,通过故障树自动生成专家系统诊断规则库,实现诊断知识的自动获取。将该系统应用于汽车变速箱装配过程的检测与故障诊断,验证了方法的有效性。
Resumo:
A new numerical procedure is proposed to investigate cracking behaviors induced by mismatch between the matrix phase and aggregates due to matrix shrinkage in cement-based composites. This kind of failure processes is simplified in this investigation as a purely spontaneous mechanical problem, therefore, one main difficulty during simulating the phenomenon lies that no explicit external load serves as the drive to propel development of this physical process. As a result, it is different from classical mechanical problems and seems hard to be solved by using directly the classical finite element method (FEM), a typical kind of "load -> medium -> response" procedures. As a solution, the actual mismatch deformation field is decomposed into two virtual fields, both of which can be obtained by the classical FEM. Then the actual response is obtained by adding together the two virtual displacement fields based on the principle of superposition. Then, critical elements are detected successively by the event-by-event technique. The micro-structure of composites is implemented by employing the generalized beam (GB) lattice model. Numerical examples are given to show the effectiveness of the method, and detailed discussions are conducted on influences of material properties.
Resumo:
In this review, the potential of mode-locked lasers based on advanced quantum-dot ( QD) active media to generate short optical pulses is analysed. A comprehensive review of experimental and theoretical work on related aspects is provided, including monolithic-cavity mode-locked QD lasers and external-cavity mode-locked QD lasers, as well as mode-locked solid-state and fibre lasers based on QD semiconductor saturable absorber mirrors. Performance comparisons are made for state-of-the-art experiments. Various methods for improving important characteristics of mode-locked pulses such as pulse duration, repetition rate, pulse power, and timing jitter through optimization of device design parameters or mode-locking methods are addressed. In addition, gain switching and self-pulsation of QD lasers are also briefly reviewed, concluding with the summary and prospects.
Resumo:
本文着重研究了工作流中各活动间的定量时序关系,提出了一种分析工作流中时间约束的方法。该方法针对基于ECA规则的工作流,通过建立及分析工作流的约束图,对工作流中活动间定量时序约束的一致性进行了分析,从而保证了工作流的正常运行。
Resumo:
The times spent by an electron in a scattering event or tunnelling through a potential barrier are investigated using a method based on the absorption probabilities. The reflection and transmission times derived from this method are equal to the local Larmor times if the transmission and reflection probability amplitudes are complex analytic functions of the complex potential. The numerical results show that they coincide with the phase times except as the incident electron energy approaches zero or when the transmission probability is too small. If the imaginary potential covers the whole space the tunnelling times are again equal to the phase times. The results show that the tunnelling times based on absorption probabilities are the best of the various candidates.
Resumo:
We propose a simple approach to generate a high quality 10 GHz 1.9 ps optical pulse train using a semiconductor optical amplifier and silica-based highly nonlinear fiber. An optical pulse generator based on our proposed scheme is easy to set up with commercially available optical components. A 10 GHz, 1.9 ps optical pulse train is obtained with timing jitter as low as 60 fs over the frequency range 10 Hz-1 MHz. With a wavelength tunable CW laser, a wide wavelength tunable span can be achieved over the entire C band. The proposed optical pulse generator also can operate at different repetition rates from 3 to 10 GHz.
Resumo:
A conductive carbon ceramic composite electrode (CCE) comprised of cc-type 1:12 phosphomolybdic acid (PMo12) and carbon powder in an organically modified silicate matrix was fabricated using a sol-gel method and characterized by scanning electron microscopy, cyclic voltammetry, and Osteryoung square-wave voltammetry. Osteryoung square-wave voltammograms of the modified electrode immersed in different acidic aqueous solutions present the dependence of current and redox potential on pH. The PMo12-doped CCE shows more reversible reaction kinetics, good stability and reproducibility, especially the renewal repeatability by simple polishing in the event of surface fouling or dopant leaching. Moreover, the modified electrode shows good catalytic activity for the electrochemical reduction of bromate.
Resumo:
A new type of silicomolybdate-methylsilicate-graphite composite material was prepared by the sol-gel technique and used for the fabrication of an amperometric nitrite sensor. The silicomolybdic anion acts as a catalyst, the graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry, square-wave voltammetry and chronoamperometry were employed to characterize the sensor. The amperometric nitrite sensor exhibited a series of good properties: high sensitivity (1.771 mu A mmol(-1) dm(3)), a short response time (7 s), remarkable long-term stability and especially reproducibility of surface renewal in the event of electrode surface fouling.