239 resultados para Electrodeposited silica

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, mechanical properties of silica-filled epoxy resin are tested. The tests show that at elevated temperatures, the material’s properties (e.g. yield stress, flow stress, etc.) vary immonotonically with filler volume fraction. Nanoindentation test results suggest that an interface region, stronger than the matrix, is formed in the materials. The formation of the interface has positive effects on the yield strengths of materials. The addition of particles in the matrix produces a large disturbance in stress distribution, leading to stress concentration in the matrix. The stress concentration has negative effects on the yield strengths of materials. The calculation demonstrates that the maximum stress in samples varies immonotonically with particulate concentration. So, the immonotonic variation of mechanical behavior of materials may be rooted in the contradictory effects of the interface region and the stress concentration caused by particulate addition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of fatigue crack nucleation for nanocrystalline (nc) nickel was experimentally investigated in this paper. The samples of electrodeposited ne nickel were loaded cyclically by using a three point bending instrument at first. Then, atomic force microscopy (AFM) was used to scanning the sample surface after fatigue testing. The results indicated that, after fatigue testing, there are vortex-like cells with an average size of 108nm appeared along the crack on nc nickel sample. And, the roughness of sample surface increased with the maximum stress at the surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage in fused silica and CaF2 crystals induced by wavelength tunable femtosecond lasers is studied. The threshold fluence is observed to increase rapidly with laser wavelength lambda in the region of 250-800 nm, while it is nearly a constant for 800

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe high-efficiency, high-dispersion reflection gratings fabricated in bulk fused Silica illuminated by incident lights in the C + L bands as (de)multiplexers for dense wavelength division multiplexing (DWDM) application. Based on the phenomenon of total internal reflection, gratings with optimized profile parameters exhibit diffraction efficiencies of more than 90% under TM- and TE-polarized incident lights for 101-nm spectral bandwidths (1520-1620 nm) and can reach an efficiency of greater than 97% for both polarizations at a wavelength of 1550 nm. Without loss of metal absorption, without coating of dielectric film layers, and independent of tooth shape, this new kind of grating should be of great interest for DWDM application. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inductively coupled plasma (ICP) technology is a new advanced version of dry-etching technology compared with the widely used method of reactive ion etching (RIE). Plasma processing of the ICP technology is complicated due to the mixed reactions among discharge physics, chemistry and surface chemistry. Extensive experiments have been done and microoptical elements have been fabricated successfully, which proved that the ICP technology is very effective in dry etching of microoptical elements. In this paper, we present the detailed fabrication of microoptical fused silica phase gratings with ICP technology. Optimized condition has been found to control the etching process of ICP technology and to improve the etching quality of microoptical elements greatly. With the optimized condition, we have fabricated lots of good gratings with different periods, depths, and duty cycles. The fabricated gratings are very useful in fields such as spectrometer, high-efficient filter in wavelength-division-multiplexing system, etc..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the design, fabrication, and excellent performance of an optimized deep-etched high-density fused-silica transmission grating for use in dense wavelength division multiplexing (DWDM) systems. The fabricated optimized transmission grating exhibits an efficiency of 87.1% at a wavelength of 1550 nm. Inductively coupled plasma-etching technology was used to fabricate the grating. The deep-etched high-density fused-silica transmission grating is suitable for use in a DWDM system because of its high efficiency, low polarization-dependent loss, parallel demultiplexing, and stable optical performance. The fabricated deep-etched high-density fused-silica transmission gratings should play an important role in DWDM systems. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe high-efficiency diffraction gratings fabricated in fused silica at the wavelength of 632.8 nm by rigorous coupled-wave analysis (RCWA). High-density holographic gratings, if the groove density falls within the range of 1575-1630 lines/mm and the groove depth within the range of 1.1-1.3 microns, can realize high diffraction efficiencies at the wavelength of 632.8 nm, e.g., the first Bragg diffraction efficiency can theoretically achieve more than 93% both in TE- and TM-polarized incidences, which greatly reduces the polarization-dependent losses. Note that with different groove profiles further optimized, the maximum efficiency of more than 99.69% can be achieved for TM-polarized incidence, or 97.81% for TE-polarized incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We described a highly efficient polarizing beam splitter (PBS) of a deep-etched binary-phase fused-silica grating, where TE- and TM-polarized waves are mainly diffracted in the -1st and 0th orders, respectively. Tb achieve a high extinction ratio and diffraction efficiency, the grating depth and period are optimized by using rigorous coupled-wave analysis, which can be well explained based on the modal method with effective indices of the modes for TE/TM polarization. Holographic recording technology and inductively coupled plasma etching are employed to fabricate the fused-silica PBS grating. Experimental results of diffraction efficiencies approaching 80% for a TE-polarized wave in the -1st order and more than 85% for a TM-polarized wave in the 0th order were obtained at a wavelength of 1550 nm. Because of its compact structure and simple fabrication process, which is suitable for mass reproduction, a deep-etched fused-silica grating as a PBS should be a useful device for practical applications. (C) 2007 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the use of a deep-etched fused-silica grating with triangular-shaped grooves as a highly efficient polarizing beam splitter (PBS). A triangular-groove PBS grating is designed at a wavelength of 1550 nm to be used in optical communication. When it is illuminated in Littrow mounting, the transmitted TE- and TM-polarized waves are mainly diffracted in the minus-first and zeroth orders, respectively. The design condition is based on the average differences of the grating mode indices, which is verified by using rigorous coupled-wave analysis. The designed PBS grating is highly efficient over the C+L band range for both TE and TM polarizations (> 97.68 %). It is shown that such a triangular-groove PBS grating can exhibit a higher diffraction efficiency, a larger extinction ratio, and less reflection loss than the binary-phase fused-silica PBS grating. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deep-etched polarization-independent binary fused-silica phase grating as a three-port beam splitter is designed and manufactured. The grating profile is optimized by use of the rigorous coupled-wave analysis around the 785 nm wavelength. The physical explanation of the grating is illustrated by the modal method. Simple analytical expressions of the diffraction efficiencies and modal guidelines for the three-port beam splitter grating design are given. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in good agreement with the theoretical values. (c) 2008 Optical Society of America.