273 resultados para EPITAXIAL LAYERS

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many experimental observations have clearly shown that dislocation interaction plays a crucial role in the kinetics of strain relaxation in epitaxial thin films. A set of evolution equations are presented in this article. The key feature of the equations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman scattering (RS) experiments have been performed for simultaneous determination of Mn composition and strain in Ga1-xMnxSb thin films grown on GaSb substrate by liquid phase epitaxy technique. The Raman spectra obtained from various Ga1-xMnxSb samples show only GaSb-like phonon modes whose frequency positions are found to have Mn compositional dependence. With the combination of epilayer strain model, RS and energy dispersive x-ray (EDX) experiments, the compositional dependence of GaSb-like LO phonon frequency is proposed both in strained and unstrained conditions. The proposed relationships are used to evaluate Mn composition and strain from the Ga1-xMnxSb samples. The results obtained from the RS data are found to be in good agreement with those determined independently by the EDX analysis. Furthermore, the frequency positions of MnSb-like phonon modes are suggested by reduced-mass model. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method is demonstrated to be effective in reducing mismatch-induced tensile stress and suppressing the formation of cracks by inserting InAlGaN interlayers during the growth of GaN upon Si (1 1 1) substrate. Compared with GaN film without quaternary interlayer, GaN layer grown on InAlGaN compliant layers shows a five times brighter integrated PL intensity and a (0 0 0 2) High-resolution X-ray diffraction (HRXRD) curve width of 18 arcmin. Its chi(min), derived from Rutherford backscattering spectrometry (RBS), is about 2.0%, which means that the crystalline quality of this layer is very good. Quaternary InAlGaN layers, which are used as buffer layers firstly, can play a compliant role to endure the large mismatch-induced stress and reduce cracks during the growth of GaN epitaxy. The mechanisms leading to crack density reduction are investigated and results show that the phase immiscibility and the weak In-N bond make interlayer to offer tenability in the lattice parameters and release the thermal stress. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman scattering measurement has been used to study the residual strains in the thin 3C-SiC/Si(001) epilayers with a variation of film thickness from 0.1 to 1.2 mu m. which were prepared by chemical vapor deposition (CVD)growth. Two methods have been exploited to figure our the residual strains and the exact LO bands. The final analyzing results show that residual strains exist in the 3C-SiC epilayers. The average stress is 1.3010 GPa, and the relative change of the lattice constant is 1.36 parts per thousand. Our measurements also show that 3C-SiC phonons are detectable even for the samples with film thickness in the range of 0.1 to 0.2 mu m. (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H_2 carrier gas. The structure,electrical properties, and thickness uniformity of the 3C-SiC epilayers are investigated by X-ray diffraction (XRD) ,sheet resistance measurement, and spectroscopic ellipsometry. XRD patterns show that the 3C-SiC films have excellent crystallinity. The narrowest full widths at half maximum of the SIC(200) and (111) peaks are 0.41° and 0.21°, respectively. The best electrical uniformity of the 50mm 3C-SiC films obtained by sheet resistance measurement is 2.15%. A σ/mean value of ± 5.7% in thickness uniformity is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between Ge content of Si1-xGex layers and growth conditions was investigated via UHV/CVD system at relative low temperature of 500℃. Si1-xGex layers were in a metastable state in this case. 10-period strained 3.0 nm- Si0.5Ge0.5/3.4 nm- Si multi quantum wells were obtained directly on Si substrate. Raman Measurement, high resolution electron microscopy and photoluminescence were used to characterize the structural and optical properties. It is found that such relative thick Si0.5Ge0.5/Si multi quantum wells are still near planar and free of dislocations, that makes it exploit applications to electrical and optical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman scattering measurement has been used to study the residual strains in the thin 3C-SiC/Si(001) epilayers with a variation of film thickness from 0.1 to 1.2 mu m. which were prepared by chemical vapor deposition (CVD)growth. Two methods have been exploited to figure our the residual strains and the exact LO bands. The final analyzing results show that residual strains exist in the 3C-SiC epilayers. The average stress is 1.3010 GPa, and the relative change of the lattice constant is 1.36 parts per thousand. Our measurements also show that 3C-SiC phonons are detectable even for the samples with film thickness in the range of 0.1 to 0.2 mu m. (C) 2000 Published by Elsevier Science S.A. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The morphological defects and uniformity of 4H-SiC epilayers grown by hot wall CVD at 1500 degrees C on off-oriented (0001) Si faces are characterized by atomic force microscope, Nomarski optical microscopy, and Micro-Raman spectroscopy. Typical morphological defects including triangular defects, wavy steps, round pits, and groove defects are observed in mirror-like SiC epilayers. The preparation of the substrate surface is necessary for the growth of high-quality 4H-SiC epitaxial layers with low-surface defect density under optimized growth conditions. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gallium nitride (GaN)-based Schottky junctions were fabricated by RF-plasma-assisted molecular beam epitaxy (MBE). The GaN epitaxial layers were deposited on novel double buffer layers that consist of a conventional low-temperature buffer layer (LTBL) grown at 500 degreesC and an intermediate-temperature buffer layer (ITBL) deposited at 690 degreesC. Low-frequency excess noise and deep level transient Fourier spectroscopy (DLTFS) were measured from the devices. The results demonstrate a significant reduction in the density of deep levels in the devices fabricated with the GaN films grown with an ITBL. Compared to the control sample, which was grown with just a conventional LTBL, a three-order-of-magnitude reduction in the deep levels 0.4 eV below the conduction band minimum (Ec) is observed in the bulk of the thin films using DLTFS measurements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A detailed characterisation study of GaN thin films grown by rf-plasma molecular beam epitaxy on intermediate-temperature buffer layers (ITBL) was carried out with Hall, photoluminescence (PL) and deep-level transient Fourier spectroscopy (DLTFS) techniques. The unique feature of our GaN thin films is that the GaN epitaxial layers are grown on top of a double layer that consists of an ITBL, which is grown at 690 degreesC, and a conventional low-temperature buffer layer deposited at 500 degreesC. It is observed that the electron mobility increases steadily with the thickness of the ITBL, which peaks at 377 cm(2)V(-1)S(-1) for an ITBL thickness of 800 nm. The PL also demonstrated systematic improvements with the thickness of the ITBL. The DLTFS results suggest a three-order-of-magnitude reduction in the deep level at E-c-0.40 eV in the device fabricated with the GaN films grown on an ITBL thickness of 1.25 mum in comparison with the control device without an ITBL. Our analyses indicate that the utilization of an ITBL in addition to the conventional low-temperature buffer layer leads to the relaxation of residual strain within the material, resulting in an improvement in the optoelectronic properties of the films. (C) 2002 Elsevier Science BN. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Epitaxial growth of SiC on complex substrates was carried out at substrate temperature from 1200 degreesC to 1400 degreesC. Three kinds of new complex substrates, c-plane sapphire, AlN/sapphire, and GaN/AlN/sapphire, were used in this study. We obtained a growth rate in the range of 1-6 mum/h. Thick (6 mum) SIC epitaxial layers with no cracks were successfully obtained on AlN/sapphire and GaN/AlN/sapphire substrates. X-ray diffraction patterns have confirmed that single-crystal SiC was obtained on these complex substrates. Analysis of optical transmission spectra of the SIC grown on sapphire substrates shows the lowest-energy gap near 2.2 eV, which is the value for cubic SiC. The undoped SIC showed n-type electrical conductivity. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GaSb based cells as receivers in thermophotovoltaic system have attracted great interest and been extensively studied in the recent 15 years. Although nowadays the manufacturing technologies have made a great progress, there are still some details need to make a further study. In this paper, undoped and doped GaSb layers were grown on n-GaSb (100) substrates from both Ga-rich and Sb-rich solutions using liquid phase epitaxy (LPE) technique. The nominal segregation coefficients k of intentional doped Zn were 1.4 and 8.8 determined from the two kinds of GaSb epitaxial layers. Additionally, compared with growing from Ga-rich solutions, the growing processes from Sb-rich solutions were much easier to control and the surface morphologies of epitaxial layers were smoother. Further-more, in order to broaden the absorbing edge, Ga1-xInxAsySb1-y quaternary alloys were grown on both GaSb and InAs substrates from In-rich solutions, under different temperature respectively.