271 resultados para Boron doped diamond

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preferred growth of nanocrystalline silicon (nc-Si) was first found in boron-doped hydrogenated nanocrystalline (nc-Si:H) films prepared using plasma-enhanced chemical vapor deposition system. The films were characterized by high-resolution transmission electron microscope, X-ray diffraction (XRD) spectrum and Raman Scattering spectrum. The results showed that the diffraction peaks in XRD spectrum were at 2theta approximate to 47degrees and the exponent of crystalline plane of nc-Si in the film was (220). A considerable reason was electric field derived from dc bias made the bonds of Si-Si array according to a certain orient. The size and crystalline volume fraction of nc-Si in boron-doped films were intensively depended on the deposited parameters: diborane (B2H6) doping ratio in silane (SiH4), silane dilution ratio in hydrogen (H-2), rf power density, substrate's temperature and reactive pressure, respectively. But preferred growth of nc-Si in the boron-doped nc-Si:H films cannot be obtained by changing these parameters. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Raman scattering and photoluminescence (PL) of boron-doped silicon nanowires have been investigated. Raman spectra showed a band at 480 cm(-1), indicating that the crystallinity of the nanowires was suppressed by boron doping. PL taken from B-doped SiNWS at room temperature exhibited three distinct emission peaks at 1.34, 1.42. and 1.47 eV and the PL intensity was much stronger than that of undoped SiNWS. The increased PL intensity should be very profitable for nano-optoelectronics. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron-doped ( B-doped) silicon nanowires have been successfully synthesized by plasma-enhanced chemical vapor deposition (PECVD) at 440degreesC using silane as the Si source, diborane( B2H6) as the dopant gas and An as the catalyst. It is desirable to extend this technique to the growth of silicon nanowire pn junctions because PECVD enables immense chemical reactivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical band gap (E-g) of the boron (B)-doped hydrogenated nano-crystalline silicon (nc-Si:H) films fabricated using plasma enhanced chemical vapor deposition (PECVD) was investigated in this work. The transmittance of the films were measured by spectrophotometric and the E-g was evaluated utilizing three different relations for comparison, namely: alphahnu=C(hnu-E-g)(3), alphahnu=B-0(hnu-E-g)(2), alphahnu=C-0(hnu-E-g)(2). Result showed that E-g decreases with the increasing of Boron doping ratio, hydrogen concentration, and substrate's temperature (T-s), respectively. E-g raises up with rf power density (P-d) from 0.45W.cm(-2) to 0.60w.cm(-2) and then drops to the end. These can be explained for E-g decreases with disorder in the films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient photoconductivity and its light-induced change were investigated by using a Model 4400 boxcar averager and signal processor for lightly boron-doped a-Si : H films. The transient photoconductivities of the sample were measured at an annealed state and light-soaked states. The transient decay process of the photoconductivity can be fitted fairly well by a second-order exponential decay function, which indicates that the decay process is related with two different traps. It is noteworthy that the photoconductivity of the film increases after light-soaking. This may be due to the deactivity of the boron acceptor B-4(-), and thus some of the boron atoms can no longer act as acceptors and drives E-F to shifts upward. Consequently, the number of effective recombination centers may be reduced and so the photoconductivity increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method, based on an infrared absorption and neutron irradiation technique, has been developed for the determination of interstitial oxygen in heavily boron-doped silicon. The new procedure utilizes fast neutron irradiated silicon wafer specimens. On fast neutron irradiation, the free carriers of high concentration in silicon can be trapped by the irradiated defects and the resistivity increased. The resulting calibration curve for the measurement of interstitial oxygen in boron-doped silicon has been established on the basis of the annealing behaviour of irradiated boron-doped CZ silicon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline silicon (polysilicon) has been used as an important structural material for microelectro-mechnical systems (MEMS) because of its compatibility with standard integrated circuit (IC) processes. As the structural layer of micromechanical high resonance frequency (high-f) and high quality factor (high-Q) disk resonators, the low residual stress and low resistivity are desired for the polysilicon thin films. In the present work, we investigate the effect of deposition and annealing conditions on the residual stress and resistivity for in-situ deposited low pressure chemical vapor deposition (LPCVD) polysilicon films. Low residual stress (-100 MPa) was achieved in in-situ boron-doped polysilicon films deposited at 570 degrees C and annealed at 1000 degrees C for 4 hr. The as-deposited amorphous polysilicon films were crystallized by the rapid thermal annealing and have the (111)-preferred orientation, the low tensile residual stress is expected for this annealed film, the detailed description on this work will be reported soon. The controllable residual stress and resistivity make these films suitable for high-Q and bigh-f micro-mechanical disk resonators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron-doped (B-doped) silicon nanowires (SiNWS) have been prepared and characterized by Raman scattering and photoluminescence (PL). B-doped SiNWS were grown by plasma enhanced chemical vapor deposition (PECVD), using diborane (B2H6) as the dopant gas. Raman spectra show a band at 480cm(-1),which is attributed to amorphous silicon. Photoluminescence at room temperature exhibits three distinct emission peaks at 1.34ev, 1.42ev, 1.47ev. Possible reason for these is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simultaneous control of residual stress and resistivity of polysilicon thin films by adjusting the deposition parameters and annealing conditions is studied. In situ boron doped polysilicon thin films deposited at 520 ℃ by low pressure chemical vapor deposition (LPCVD) are amorphous with relatively large compressive residual stress and high resistivity. Annealing the amorphous films in a temperature range of 600-800 ℃ gives polysilicon films nearly zero-stress and relatively low resistivity. The low residual stress and low resistivity make the polysilicon films attractive for potential applications in micro-electro-mechanical-systems (MEMS) devices, especially in high resonance frequency (high-f) and high quality factor (high-Q MEMS resonators. In addition, polysilicon thin films deposited at 570 ℃ and those without the post annealing process have low resistivities of 2-5 mΩ·cm. These reported approaches avoid the high temperature annealing process (> 1000℃), and the promising properties of these films make them suitable for high-Q and high-f MEMS devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron-doped hydrogenated silicon films with different gaseous doping ratios (B_2H_6/SiH_4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (E_a). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical band gap (E-g) of the boron (B)-doped hydrogenated nano-crystalline silicon (nc-Si:H) films fabricated using plasma enhanced chemical vapor deposition (PECVD) was investigated in this work. The transmittance of the films were measured by spectrophotometric and the E-g was evaluated utilizing three different relations for comparison, namely: alphahnu=C(hnu-E-g)(3), alphahnu=B-0(hnu-E-g)(2), alphahnu=C-0(hnu-E-g)(2). Result showed that E-g decreases with the increasing of Boron doping ratio, hydrogen concentration, and substrate's temperature (T-s), respectively. E-g raises up with rf power density (P-d) from 0.45W.cm(-2) to 0.60w.cm(-2) and then drops to the end. These can be explained for E-g decreases with disorder in the films.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is well known that the value of room-temperature conductivity sigma(RT) of boron-doped silicon films is one order lower than that of phosphorus-doped silicon films, when they are deposited in an identical plasma-enhanced chemical vapour deposition system. We use surface acoustic wave and secondary-ion mass spectrometry techniques to measure the concentration of total and electrically active boron atoms. It is shown that only 0.7% of the total amount of incorporated boron is electrically active. This is evidence that hydrogen atoms can passivate substitutional B-Si bonds by forming the neutral B-H-Si complex. By irradiating the boron-doped samples with a low-energy electron beam, the neutral B-H-Si complex converts into electrically active B-Si bonds and the conductivity can be increased by about one order of magnitude, up to the same level as that of phosphorus-doped samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphorous-doped and boron-doped amorphous Si thin films as well as amorphous SiO2/Si/SiO2 sandwiched structures were prepared in a plasma enhanced chemical vapor deposition system. Then, the p-i-n structures containing nano-crystalline Si/SiO2 sandwiched structures as the intrinsic layer were prepared in situ followed by thermal annealing. Electroluminescence spectra were measured at room temperature under forward bias, and it is found that the electroluminescence intensity is strongly influenced by the types of substrate. The turn-on voltages can be reduced to 3 V for samples prepared on heavily doped p-type Si (p(+)-Si) substrates and the corresponding electroluminescence intensity is more than two orders of magnitude stronger than that on lightly doped p-type Si (p-Si) and ITO glass substrates. The improvements of light emission can be ascribed to enhanced hole injection and the consequent recombination of electron-hole pairs in the luminescent nanocrystalline Si/SiO2 system. (C) 2008 Elsevier Ltd. All rights reserved.