367 resultados para radioactive C-9-ion beam


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e mu A of O7+, 505 e mu A of Xe20+ 306 e mu A of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Yeast strain Saccharornyces cerevisiae was irradiated with different doses of 85 MeV/u Ne-20(10+) to investigate DNA damage induced by heavy ion beam in eukaryotic microorganism. The survival rate, DNA double strand breaks (DSBs) and DNA polymorphic were tested after irradiation. The results showed that there were substantial differences in DNA between the control and irradiated samples. At the dose of 40 Cy, the yeast cell survival rate approached 50%, DNA double-strand breaks were barely detectable, and significant DNA polymorphism was observed. The alcohol dehydrogenase II gene was amplified and sequenced. It was observed that base changes in the mutant were mainly transversions of T-->G and T-->C. It can be concluded that heavy ion beam irradiation can lead to change in single gene and may be an effective way to induce mutation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experiment to study exotic two-proton emission from excited levels of the odd-Z nucleus P-28 was performed at the National Laboratory of Heavy Ion Research-Radioactive Ion Beam Line (HIRFL-RIBLL) facility. The projectile P-28 at the energy of 46.5 MeV/u was bombarding a Au-197 target to populate the excited states via Coulomb excitation. Complete-kinematics measurements were realized by the array of silicon strip detectors and the CsI + PIN telescope. Two-proton events were selected and the relativistic-kinematics reconstruction was carried out. The spectrum of relative momentum and opening angle between two protons was deduced from Monte Carlo simulations. Experimental results show that two-proton emission from P-28 excited states less than 17.0 MeV is mainly two-body sequential emission or three-body simultaneous decay in phase space. The present simulations cannot distinguish these two decay modes. No obvious diproton emission was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiolysis of cysteine under plasma discharge and irradiation of low-energy Ion beam was investigated. The damage of cysteine in aqueous solution under discharge was assessed via the acid ninhydrin reagent and the yield of cystine produced from the reaction was analyzed by FTIR In addition, the generation of hydrogen sulfide was also identified The destruction of solid cysteine under low-energy ion beam irradiation was estimated via monitoring IR bands of different functional groups (-SH, -NH3, -COO-) of cysteine. and the production of cystine from ion-irradiated solid cysteine after dissolution in water was also verified These results may help us to understand the inactivation of sulphydryl enzymes under direct and indirect interaction with the low-energy ion irradiation (C) 2010 Elsevier B V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We measured the total reaction cross sections of N-12 in Si at 36.2 MeV/u. using Radioactive Ion Beam Line in Lanzhou (RIBLL) with a new method. The reaction target was installed at the intermediate focusing point T1 at RIBLL. This scheme allows us to identify particles before and after the reaction target unambiguously. The total reaction cross section (1760 +/- 78mb) of N-12 in Si is obtained. Assuming that N-12 consists of a core C-11 plus one halo proton, the excitation function of N-12 on the Si and C targets is calculated with the Glauber model and the Fermi-Fermi density distributions. It can fit the experimental data very well. A large diffusion of the protons density distribution supports the halo structure for N-12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal properties of a micro-electromechanical system sensor were analysed by a novel digital moire method. A double-layer micro-cantilever sensor (60 mu m long, 10 mu m width and 2 mu dm thick) was prepared by focused ion beam milling. A grating with frequency of 5000 lines mm- I was etched on the cantilever. The sensor was placed into a scanning electron microscope system with a high temperature device. The observation and recording of the thermal deformation of the grating were realised in real-time as the temperature rose from room temperature to 300 degrees C at intervals of 50 degrees C. Digital moire was generated by interference of the deformed grating and a digital virtual grating. The thermal properties including strain distribution of the sensor and the linear expansion coefficient of polysilicon were accurately measured by the phase-shifted moire patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diluted magnetic semiconductor (Ga,Mn)N were prepared by the implantation of Mn ions into GaN/Al2O3 substrate. Clear X-ray diffraction peak from (Ga,Mn)N is observed. It indicates that the solid solution (Ga,Mn)N phase was formed with the same lattice structure as GaN and different lattice constant. Magnetic hysteresis-loops of the (Ga,Mn)N were obtained at room temperature (293 K) with the coercivity of about 2496.97 A m(-1). (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interface of a laser-discrete-quenched steel substrate and as-deposited chromium electroplate was investigated by ion beam etching, dissolving-substrate-away and using a Vickers microhardness tester, in an attempt to reveal the mechanism that the service life of the chromium-coated parts is increased by the duplex technique of laser pre-quenching plus chromium post-depositing. The laser quenching of the steel substrate can reduce the steep hardness gradient at the substrate/chromium interface and improve the load-bearing capacity of chromium electroplate. Moreover, the laser quenching prior to plating has an extremely great effect on the morphologies and microstructure of the substrate/chromium interface: there is a transient interlayer at the original substrate/chromium interface while there is not at the laser-quenchedzone/chromium interface; the near-substrate surface microstructure and morphologies of the free-standing chromium electrodeposits, whose substrate was dissolved away with nital 30% in volume, inherit the periodically gradient characteristics of the laser-discrete-quenched substrate surface. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin, character, analysis and treatment of subsurface damage (SSD) were summarized in this paper. SSD, which was introduced to substrates by manufacture processes, may bring about the decrease of laser-induced damage threshold (LIDT) of substrates and thin films. Nondestructive evaluation (NDE) methods for the measurement of SSD were used extensively because of their conveniences and reliabilities. The principle, experimental setup and some other technological details were given for total internal reflection microscopy (TIRM), high-frequency scanning acoustic microscopy (HFSAM) and laser-modulated scattering (LMS). However, the spatial resolution, probing depth and theoretic models of these NDE methods demanded further studies. Furthermore, effective surface treatments for minimizing or eliminating SSD were also presented in this paper. Both advantages and disadvantages of ion beam etching (IBE) and magnetorheological finishing (MRF) were discussed. Finally, the key problems and research directions of SSD were summarized. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Used in chirped-pulse amplification system and based on multi-layer thin film stack, pulse compressor gratings (PCG) are etched by ion-beam and holographic techniques. Diffraction efficiency and laser-induced damage threshold rely on the structural parameters of gratings. On the other hand, they depend greatly on the design of multi-layer. A theoretic design is given for dielectric multi-layer, which is exposed at 413.1 nm and used at 1053 nm. The influences of coating design on optical characters are described in detail. The analysis shows that a coating stack of H3L (H2L) (boolean AND) 9H0.5L2.01H meets the specifications of PCG well. And there is good agreement of transmission between experimental and the theoretic design. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) films with c-oriented were grown on fused quartz glass substrates at room temperature using dc reactive magnetron sputtering. The as-grown films were annealed at 700 degrees C in air and bombarded by ion beam, respectively. The effects of post-treatments on the structural and optical properties of the ZnO films were investigated by X-ray diffraction (XRD), photoluminescence (PL), optical transmittance and absorption measurements. The XRD spectra indicate that the crystal quality of ZnO films has been improved by both the post-treatments. Compared with the as-grown sample, both annealed and bombarded samples exhibited blueshift in the UV emission peaks, and a strong green emission was found in the annealed ZnO film. In both optical transmittance and absorption spectra, a blueshift of the band-gap edge was observed in the bombarded film, while a redshift was observed in the annealed film. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the control of polarization for a broadband dichroic filter was reported and some design examples were elaborated. This method could be applied over a wide range of wavelengths and a wide range of polarizations in the transmission region. A nonpolaiizing broadband dichroic filter and a broadband dichroic filter with certain polarization were designed and fabricated by electron beam evaporation with ion beam assisted deposition. The experimental spectral performances showed good agreement with their theoretical curves. In addition, the application of the method was discussed. (c) 2007 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of ZrO2, HfO2 and TiO2 were deposited on kinds of substrates by electron beam evaporation (EB), ion assisted deposition (IAD) and dual ion beam sputtering (DIBS). Then some of them were annealed at different temperatures. X-ray diffraction (XRD) was applied to determine the crystalline phase and the grain size of these films, and the results revealed that their microstructures strongly depended on the deposition conditions such as substrate, deposition temperature, deposition method and annealing temperature. Theory of crystal growth and migratory diffusion were applied to explain the difference of crystalline structures between these thin films deposited and treated under various conditions. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm(2), but it is increased to 8.98 J/cm(2) after annealing under temperature of 200 degrees C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization. (C) 2008 Elsevier B.V. All rights reserved.