161 resultados para metal-free growth
Resumo:
Post-growth annealing was carried out on ZnO thin films grown by metal-organic chemical vapor deposition (MOCVD). The grain size of ZnO thin film increases monotonically with annealing temperature. The ZnO thin films were preferential to c-axis oriented after annealing as confirmed by Xray diffraction (XRD) measurements. Fourier transformation infrared transmission measurements showed that ZnO films grown at low temperature contains CO2 molecules after post-growth annealing. A two-step reaction process has been proposed to explain the formation mechanism of CO2, which indicates the possible chemical reaction processes during the metal-organic chemical vapor deposition of ZnO films.
Resumo:
A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.
Resumo:
Three different types of GaAs metal-semiconductor field effect transistors (MESFET) by employing ion implantation, molecular beam epitaxy (MBE) and low-temperature MBE (LT MBE) techniques respectively were fabricated and studied in detail. The backgating (sidegating) measurement in the dark and in the light were carried out. For the LT MBE-GaAs buffered MESFETs, the output resistance R(d) and the peak transconductance g(m) were measured to be above 50 k Omega and 140 mS/mm, respectively, and the backgating and light sensitivity were eliminated. A theoretical model describing the light sensitivity in these kinds of devices is given. and good agreement with experimental data is reached.
Resumo:
High performance InP/InGaAs heterojunction bipolar transistors(HBTs) have been widely used in high-speed electronic devices and optoelectronic integrated circuits. InP-based HBTs were fabricated by low pressure metal organic chemical vapor deposition(MOCVD) and wet chemical etching. The sub-collector and collector were grown at 655 ℃ and other layers at 550 ℃. To suppress the Zn out-diffusion in HBT, base layer was grown with a 16-minute growth interruption. Fabricated HBTs with emitter size of 2.5×20 μm~2 showed current gain of 70~90, breakdown voltage(BV_(CE0))>2 V, cut-off frequency(f_T) of 60 GHz and the maximum relaxation frequency(f_(MAX)) of 70 GHz.
Resumo:
The relationship between Ge content of Si1-xGex layers and growth conditions was investigated via UHV/CVD system at relative low temperature of 500℃. Si1-xGex layers were in a metastable state in this case. 10-period strained 3.0 nm- Si0.5Ge0.5/3.4 nm- Si multi quantum wells were obtained directly on Si substrate. Raman Measurement, high resolution electron microscopy and photoluminescence were used to characterize the structural and optical properties. It is found that such relative thick Si0.5Ge0.5/Si multi quantum wells are still near planar and free of dislocations, that makes it exploit applications to electrical and optical devices.
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multiquantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30μm). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10 GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
Studies on first GaN-based blue-violet laser diodes(LDs) in China mainland are reported.High quality GaN materials as well as GaN-based quantum wells laser structures are grown by metal-organic chemical vapor deposition method.The X-ray double-crystal diffraction rocking curve measurements show the full-width half maximum of 180" and 185" for (0002) symmetric reflection and (10(-1)2) skew reflection,respectively.A room temperature mobility of 850cm2/(V·s) is obtained for a 3μm thick GaN film.Gain guided and ridge geometry waveguide laser diodes are fabricated with cleaved facet mirrors at room temperature under pulse current injection.The lasing wavelength is 405.9nm.A threshold current density of 5kA/cm2 and an output light power over 100mW are obtained for ridge geometry waveguide laser diodes.
Resumo:
The 940 nm Al-free active region laser diodes and bars with a broad waveguide were designed and fabricated. The stuctures were grown by metal organic chemical vapour deposition. The devices show excellent performances. The maximum output power of 6.7 W in the 100 f^m broad-area laser diodes has been measured, and is 2. 5 times higher than that in the Al-containing active region laser diodes with a narrow waveguide and 1. 7 times higher than that in Al-free active region laser diodes with a narrow waveguide. The 19 % fill-factor laser diode bars emit 33 W, and they can operate at 15W with low degradation rates.
Resumo:
Two quaternary InAlGaN films were grown by metal-organic chemical-vapor deposition (MOCVD) on sapphire (0001) substrates with and without high-temperature GaN interlayer, respectively. The structural and optical properties of the quaternary films were investigated by high-resolution X-ray diffraction (HRXRD), high-resolution electron microscopy (HREM), temperature-dependent photoluminescence (PL) spectroscopy and time-resolved photoluminescence (TRPL) spectroscopy. According to the HRXRD and PL results, it is demonstrated that two samples have the same crystal quality. The TRPL signals of both samples were fitted well as a stretched exponential decay from 14 K to 250 K, indicating significant disorder in the materials, which is attributed to recombination of excitons localized in disorder quantum nanostructures such as quantum dots or quantum disks originating from indium (In) clusters or In composition fluctuation. The cross-section HREM measurement further proves that there exist disorder quantum nanostructures in the quaternary. By investigating the temperature dependence of the dispersive exponent beta, it is shown that the stretched exponential decays of the two samples originate from different mechanisms. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In this paper, we report on the design, growth and fabrication of 980nm strained InGaAs quantum well lasers employing novel material system of Al-free active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in laser structure design, improvement of surface morphology and laser performance. We demonstrate an optimized broad-waveguide structure for obtaining high power 980nm quantum well lasers with low vertical beam divergence. The laser structure was grown by low-pressure metalorganic chemical vapor deposition, which exhibit a high internal quantum efficiency of similar to 90% and a low internal loss of 1.5-2.5 cm(-1). The broad-area and ridge-waveguide laser devices are both fabricated. For 100 mu m wide stripe lasers with cavity length of 800 mu m, a low threshold current of 170mA, a high slope efficiency of 1.0W/A and high output power of more than 3.5W are achieved. The temperature dependences of the threshold current and the emitting spectra demonstrate a very high characteristic temperature coefficient (T-o) of 200-250K and a wavelength shift coefficient of 0.34nm/degrees C. For 4 mu m-width ridge waveguide structure laser devices, a maximum output power of 340mW with GOD-free thermal roll-over characteristics is obtained.
Resumo:
A new method is realized for the growth of self-formed quantum dots. We identify that dislocation-free islands can be formed by the strain from the strained superlattice taken as a whole. Unlike the Stranski-Krastanow (S-K) growth mode, the islands do not form during the growth of the corresponding strained single layers. Highly uniform quantum dots can be self-formed via this mechanism. The low temperature spectra of self-formed InGaAs/GaAs quantum dot superlattices grown on a (001) GaAs substrate have a full width at half maximum of 26-34 meV, indicating a better uniformity of quantum dot size than those grown in the S-K mode. This method can provide great degrees of freedom in designing possible quantum dot devices. 1998 Published by Elsevier Science B.V. All rights reserved.
Resumo:
植物生长和生产力受到自然界各种形式的生物和非生物胁迫因子的影响。这些胁迫包括低温、高温、盐碱、干旱、洪水、重金属、虫害、病害和紫外线辐射等等。而人类活动大大加剧了这些胁迫所带来的影响。由于人类污染而导致臭氧层衰减以及由此产生的地球表面紫外辐射增强已经成为全球气候变化的一个主要方面。UV-B胁迫,甚至当前的辐射水平,所带来的影响已经引起科学工作者的广泛关注。 为了生存和繁殖,植物不得不面临环境中各种潜在胁迫所带来的负面影响。然而,植物生活型的不可移动性决定了其逃避胁迫的局限性。因此,绝大多数植物都是通过对胁迫作出反应,通过修复或者更新组织来降低伤害。而植物应对环境变化的能力则是由其生长模式的种属特异性和本身的遗传组成所决定。在自然界,植物常常同时面临多种胁迫,这些胁迫所引发的植物反应可能具有叠加、协同或者拮抗作用。沙棘是一种具刺、具有固氮功能的多年生雌雄异株灌木,广泛分布于亚欧大陆的温带地区和亚洲亚热带的高海拔地区。在中国,沙棘常常被用作植被恢复中的先锋树种而大量栽培。本文采用沙棘作为模式植物,试图探索木本植物对低温,UV-B辐射增强以及其与干旱的复合胁迫的响应以及沙棘对这些胁迫响应是否具有种群差异性。 对来自南北两个种群的沙棘进行短日照和低温处理,检测了其在抗寒锻炼和抗寒性发育过程中存在的性别差异。结果表明,短日照和低温都分别能够诱导抗寒锻炼的发生,而两者同时存在对所有实验植株抗寒性的大小具有叠加效应。然而,短日照和低温所诱导的抗寒性在两个种群中都具有性别差异性,雄性植株比雌雄植株对短日照和低温更为敏感。同时,南北种群间也存在差异性,北方种群的植物比南方种群的植物对短日照和低温敏感,从而在短日照下抗寒锻炼的发生时间更早,低温诱导的抗寒性更大。短日照和低温诱导植物增加抗寒性的同时伴随着脱落酸的变化。脱落酸的变化因处理,种群和性别的不同而不同。这些生理反应表明不同的沙棘种群,不同的植株性别对同一环境胁迫可能存在不同的生存策略。 比较了来自高低两个海拔的沙棘种群对于干旱和UV-B辐射增强以及两者复合胁迫条件下的生理生态反应。干旱使两个种群中植株总的生物量,总叶面积,比叶面积,叶片含碳量,含磷量,木质素含量和碳氮比显著降低,使根冠比,粗根细根比和叶片脱落酸含量显著增加。干旱而非UV-B使得δ13C 值显著增加。但是,比较而言,来自高海拔的种群对干旱反应更为强烈,而来自低海拔的种群对UV-B更敏感。在UV-B辐射增强的处理下,干旱所诱导的脱落酸的积累被显著抑制。而且我们检测到在一些指标上存在显著的干旱×UV-B交互作用,如两个种群中在总生物量上,低海拔种群中在总叶面积,粗根细根比上,高海拔种群中在比叶面积,δ13C值,木质素含量上都存在明显的交互作用。这些结果表明这两个种群对胁迫具有不同的适应性反应,来自高海拔的种群比来自低海拔的种群更能够抵御干旱和UV-B胁迫。 室外实验表明,UV-B 去除/增补对沙棘高低两个海拔种群的影响都不大。对生物量的积累,植株高度以及一些常见的胁迫反应生理指标比如丙二醛、ABA 和游离脯氨酸都没有显著影响。UV-B 的效应比UV-A 大,植物反应在无UV 和仅有UV-A 的处理间没有什么区别。然而,UV-B 去除的两个处理和UV-B 存在的两个处理间存在显著区别。UV-B 使得两个种群都显著降低了比叶面积(SLA),但却使长期用水效率增加。但UV-B对光合色素和光合系统II 的影响不大。总体看来,来自低海拔的种群对UV-B 更为敏感。 Plant is adversely affected by various abiotic and biotic stress factors. These stressors includelow temperature, heat, salt, drought, flooding, heavy metal toxicity, wounding by herbivores,infecting by pathogenic microorganisms, ultraviolet (UV) radiation and so on. Variousanthropogenic activities have accentuated the existing stress factors. One of the mostimportant aspects of global change is that of stratospheric ozone depletion caused by seriousanthropogenic pollution and the resulting increase in UV radiation reaching the surface of theEarth. Scientists have become concerned about the effects that considerable UV-B stress, evenat current levels. In order to survive and reproduce, plants have to be able to cope with lots of potentiallyharmful stress factors that are almost constantly present in their environment. Most plants’responses under stress are to neutralize the stress, repairing the damage or regrowing newtissue rather than to avoid it due to their sessile life style. The plant defense capacity dependson plant-specific modular growth patterns and genetic make-up that allows for flexibleresponses to changing environments. Plants usually encounter several stresses simultaneouslyunder field conditions, and the stresses may cause a variety of plant responses, which can beadditive, synergistic or antagonistic. Sea buckthorn (Hippophae rhamnoides L.), a thorny nitrogen fixing deciduously perennialshrub, which is widely distributed throughout the temperate zones of Asia and Europe and thesubtropical zones of Asia at high altitudes. It has been widely used in forest restoration as thepioneer species in China. In this paper, we used sea buckthorn as a model, tried to get some understand of how plants fight low temperature, enhanced UV-B radiation level and thatcombination of drought. And also, want to know whether does there exist some populationspecific responses to such stressors. Sexual differences in cold acclimation and freezing tolerance development of two contrastingsea buckthorn (Hippophae rhamnoides L.) ecotypes from northern and southern regions inChina were recorded after exposure to short day photoperiod (SD) and low temperature (LT).The results demonstrated that cold acclimation could be triggered by exposing the plants toSD or LT alone, and that a combination of both treatments had an additive effect on freezingtolerance in all plants tested. However, development of freezing tolerance was dependent onthe sex of plants under SD and LT, the males were clearly more responsive to SD and LT thanthe females in both ecotypes studied. On the other hand, development of freezing tolerancewas also ecotype-dependent, the northern ecotype was more responsive to SD and LT than thesouthern ecotype, resulting in earlier cold acclimation under SD and higher freezing toleranceunder LT. Moreover, development of freezing tolerance induced by SD and LT wasaccompanied by changes in ABA levels. These alterations in ABA levels were different indifferent treatments, ecotypes and sexes. Therefore, the differences in SD and LT-inducedphysiological responses showed that the different ecotypes and the different sexes mightemploy different survival strategies under environmental stress. Two contrasting populations from the low and high altitudinal regions were employed toinvestigate the effects of drought, UV-B and their combination on sea buckthorn. Droughtsignificantly decreased total biomass, total leaf area, specific leaf area,leaf carbon (C),phophous (P), lignin content and the ratio of C: N in both populations, and increasedroot/shoot ratio, fine root/coarse root ratio and abscisic acid content (ABA), in bothpopulations. Drought but not UV-B resulted in significantly greater carbon isotopecomposition (δ13C) values in both populations. However, the high altitudinal population wasmore responsive to drought than the low altitudinal population. The drought-inducedenhancement of ABA in the high altitudinal population was significantly suppressed in thecombination of drought and elevated UV-B. Moreover, significant drought × UV-B interactionwas detected on total biomass in both populations, total leaf area and fine root/coarse root inthe low altitudinal population, specific leaf area, δ13C value and leaf lignin content in the high altitudinal population. These results demonstrated that there were different adaptive responsesbetween two contrasting populations, the high altitudinal population exhibited highertolerance to drought and UV-B than the low altitudinal population. A field experiment was conducted to investigate effects of UV-B exclusion/supplementationon two altitudinal populations of sea buckthorn. UV-B exclusion or supplementation had littleeffects on both populations investigated. For instance, the total biomass, plant height andsome physiological index such as Malondialdehyde (MDA), ABA and free proline were notchanged significantly. The UV-B effects are more significant than that of UV-A, nodifferences were found between treatments of excluded UV and excluded UV-B. However,compared with treatments of UV-B exclusion (including absent of UV-B and all UV band),the present of UV-B (including near ambient environment and enhanced UV-B) significantdecreased specific leaf area, and increased long time water use efficiency as evaluated by δ13Cvalue. UV-B had little effects on photosynthetic pigments and Photosystem II (PSII). The lowaltitude population is more sensitive to UV-B than that of the high altitude population.
Resumo:
土壤是人类赖以生存的自然环境和农业生产的重要资源,世界面临的粮食、资源和环境问题与土壤密切相关,目前危害土壤的主要因素是干旱和重金属污染。杨树具有适应性强、生长快和丰产等特性,本论文以青杨组杨树为模式植物,采用植物生态、生理及生物化学等方法,研究杨树对土壤干旱和锰胁迫的生态生理反应以及种群间差异,研究成果可为我国干旱半干旱地区营造人工林、防止沙漠化提供理论依据,也为恢复与重建重金属污染地区退化生态系统提供科学指导。主要研究结果如下: 1. 青海杨不同种群对干旱胁迫的响应差异 干旱胁迫显著降低了两个青海杨种群(干旱种群和湿润种群)生物量积累,包括株高、基径、干物质积累等,通过植物结构的调整,有更多的生物量向根部分配。干旱胁迫还显著降低了叶绿素和类胡萝卜素含量,增加了游离脯氨酸和总氨基酸含量。另一方面,干旱胁迫诱导了活性氧的积累,作为第二信使,激活了抗氧化系统,包括抗坏血酸(ASA)含量和酶系统如超氧化物歧化酶(SOD),愈创木酚过氧化物酶(GPX),抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)。这样,杨树既有避旱机制又有耐旱机制,使其在干旱胁迫下有相当程度的可塑性。与湿润种群相比,干旱种群杨树有更多的生物量分配到根部,积累了更多的游离脯氨酸和总氨基酸来进行渗透调节,并且有更有效的抗氧化系统,包括更高含量的ASA 和更高活性的APX 和GR,这些使得干旱种群杨树比湿润种群杨树对干旱有更好的耐性。 2. 喷施硝普钠(SNP)对青海杨阿坝种群干旱胁迫耐性的影响 干旱胁迫显著的降低了青海杨阿坝种群的生长和生物量积累以及叶片相对含水量,还诱导了脯氨酸的合成以进行渗透调节。干旱胁迫下过氧化氢(H2O2)显著累积从而造成对膜脂和蛋白的伤害,使得丙二醛和蛋白羰基含量升高。干旱胁迫下喷施SNP可以减轻干旱胁迫造成的伤害,包括增加叶片的相对含水量,增加脯氨酸和总氨基酸的积累,并激活抗氧化酶系统如SOD,GPX和APX,从而减少丙二醛(MDA)和蛋白羰基(C=O)的积累,但是在水分良好情况下SNP的效果不显著。 3. 青杨不同种群对锰胁迫的生长与形态响应差异 在同一锰浓度下,干旱种群的耐性指数都要高于湿润种群,这表明青杨对干旱和高锰胁迫具有交叉耐性。两个种群的株高,生物量和叶绿素含量都随锰浓度的升高而逐渐下降。就累积浓度而言,0 和0.1 mM 锰胁迫下,干旱种群积累的锰浓度要高于湿润种群,而在高浓度锰胁迫下(0.5 和1 mM),湿润种群要高于干旱种群。在0,0.1 和0.5 mM下,锰大多积累在根中,叶片次之,茎中最少。而在1 mM,锰更多的积累在叶片中。就累积总量而言,在各个锰浓度胁迫下,根,茎和叶相比,两个种群青杨都是叶片累积的锰总量要高于根和茎。两个种群间比较,对照中没有显著区别,0.1 mM 锰胁迫下,湿润种群根中累积的锰要高于干旱种群,而在地上部中,干旱种群要高于湿润种群。而0.5 和1 mM 锰胁迫下,根、叶、茎+叶、根+茎+叶中,锰累积总量都是湿润种群高于干旱种群。锰胁迫下,青杨叶片数和叶面积包括总叶面积和平均叶面积都显著降低。叶片横切面的光学显微观察结果表明未经锰胁迫的栅栏组织的细胞饱满,海绵组织发达、清晰;胁迫后杨树叶片栅栏组织细胞出现不同程度的皱缩,海绵组织几乎不可见,此外还发现输导组织在胁迫下密度变小和分生组织严重割裂等现象。 4. 青杨不同种群对锰胁迫的生理与生化响应差异 青杨两个种群脱落酸(ABA)含量在锰胁迫下都显著增加,干旱种群的增幅更大。三种多胺含量在锰胁迫下显示了不同的响应趋势:腐胺在两个种群的各个锰处理下都增加,亚精胺只在干旱种群中显著增加,而精胺除了干旱种群在1 mM 下有所增加外,在锰胁迫下变化很小。谷胱甘肽含量随锰浓度升高而增加,在0.5 mM 锰时达到最高值,1mM 时有所下降。植物络合素(PCs)含量与非蛋白巯基(NP-SH)趋势相似,随锰浓度的升高而增加,且干旱种群中含量要高于湿润种群。锰处理还引起氧化胁迫,表现为过氧化氢和丙二醛含量增加。SOD 活性在湿润种群中,在0 到0.5 mM 锰胁迫下活性升高,但在1 mM 锰胁迫时,其活性有所下降。而在干旱种群中,SOD 活性变化较小,并始终维持在一个较高的水平。APX 活性在两个种群中都随锰浓度的升高而增加,干旱种群活性要高于湿润种群。锰胁迫还显著增加了酚类物质的含量,同时GPX 和多酚氧化酶(PPO)活性也随锰浓度的升高而增加。干旱种群的酚类含量和GPX 与PPO 活性都要高于湿润种群。锰胁迫还改变了氨基酸的含量和构成,根据锰胁迫下浓度变化的不同,可以将游离氨基酸分为三组:第一组包括,谷氨酸,丙氨酸和天门冬氨酸,这一组氨基酸含量在锰胁迫下有所下降。第二组包括缬氨酸,亮氨酸和苏氨酸含量在锰胁迫下基本不变化或变化很小。剩下的氨基酸为第三组,这组氨基酸含量在锰胁迫下显著增加,而根据增加的幅度又可以将它们分为两个亚组,丝氨酸,酪氨酸,苯丙氨酸,组氨酸和脯氨酸,在1 mM 下的含量是对照的4 倍以上。异亮氨酸,赖氨酸,精氨酸和甘氨酸含量在1 mM 下是对照含量的2 倍以下。同时,同一锰浓度下,干旱种群比湿润种群积累的氨基酸含量要高。 Soil is the indispensable environment for human survival and important resource foragriculture development. Food and environmental problems facing the world are all closelyrelated to soil and nowadays it is threatened by many factors, among which drought stress andheavy metal pollution are the most serious ones. Poplars (Populus spp.) are importantcomponents of ecosystem and suitable as a source of fuel, fiber and lumber due to their fastgrowth. In this study, different populations of Section Tacamahaca spach were used as modelplants to investigate the adaptability to drought stress and manganese toxicity and differencesbetween populations from dry and wet climate regions. Our results can provide theoreticalevidence for the afforestation and prevention of desertification in the arid and semi-arid areas,and also can supply scientific direction for the reconstruction and rehalibitation of ecosystemscontaminated by heavy metals. The results are as follows: 1. Differences in ecophysiological responses to drought stress in two contrastingpopulations of Populus przewalskii Drought stress not only significantly affected dry mass accumulation and allocation, butalso significantly decreased chlorophyll pigment contents and accumulated free proline andtotal amino acids. On the other hand, drought also significantly increased the levels ofabscisic acid and reactive oxygen species, as secondary messengers, to induce the entire set ofantioxidative systems including the increase of reduced ascorbic acid content and the activities of superoxide dismutase, guaiacol peroxidase, ascorbate peroxidase and glutathioneredutase. Thus the combination of drought avoidance and tolerance mechanisms conferredpoplar a high degree of plasticity in response to drought stress. Compared with the wetclimate population, the dry climate population showed lower dry matter accumulation andallocated more biomass to root systems, and accumulated more free proline and total aminoacids for osmotic adjustment. The dry climate population also showed more efficientantioxidant systems with higher content of ascorbic acid and higher activities of ascorbateperoxidase and glutathione redutase than the wet climate population. All these made the dryclimate population superior in adaptation to drought stress than the wet climate population. 2. Effect of exogenous applied SNP on drought tolerance in Populus przewalskii Drought stress significantly increased hydrogen peroxide content and caused oxidativestress to lipids and proteins assessed by the increase in malondialdehyde and total carbonylcontents, respectively. The cuttings of P. przewalskii accumulated proline and other aminoacids for osmotic adjustment to lower water potential, and activated the antioxidant enzymes such as superoxide dismutase, guaiacol peroxidase and ascorbate peroxidase to maintain thebalance of generation and quenching of reactive oxygen species. Moreover, exogenous SNPapplication significantly heightened the growth performance of P. przewalskii cuttings underdrought treatment by promotion of proline accumulation and activation of antioxidant enzymeactivities, while under well-watered treatment the effect of SNP application was very little. 3. Morphological responses to manganese toxicity in the two contrasting populations ofPopulus cathayana High concentration of manganese caused significant decrease in shoot height andbiomass accumulation. The tolerance index of the dry climate population was significantlyhigher than that of the wet climate population, suggesting the superior Mn tolerance in theformer and the existence of cross-tolerance of drought stress and high Mn toxicity. Injuries tothe leaf anatomical features were also found as the reduced thickness in palisade and spongyparenchyma, the decreased density in the conducting tissue and the collapse and split in themeristematic tissue in the central vein. As for the Mn concentrations in the plant tissues, under0, 0.1 and 0.5 mM, most of the Mn accumulated in the roots, then leaves, and stem the least, while under 1 mM, most of the Mn accumulated in the leaves. As far as the total amounts ofMn extraction are concerned, the leaf extracted more Mn than the root and stem in the twopopulations under various Mn concentrations. There is no difference between the twopopulations under control. Under 0.1 mM, the wet climate population extracted higher Mn inthe root than the dry climate population, while in the shoot, the dry climate populationextracted much more Mn. Under 0.5 and 1 mM, the wet climate population translocated moreMn both in the root and the shoot than the dry climate population. 4. Physiological and biochemical responses to manganese toxicity in the two contrastingpopulations of Populus cathayana Mn treatment resulted in oxidative stress indicated by the oxidation to lipids, proteinsand DNA. A regulated network of defence strategies was employed for the chelation,detoxification and tolerance of Mn including the enhanced synthesis of ABA and polyamines,the accumulation of free amino acids, especially His and Pro, and the activation of theenzymes superoxide dismutase and guaiacol peroxidase. Contents of non-protein thiol,reduced glutathione, phytochelatins and phenolics compounds and activities of superoxide dismutase, guaiacol peroxidase and polyphenol oxidase also increased significantly forantioxidant or chelation functions. The wet climate population not only accumulated lessabscisic acid, free amino acids, phytochelatins and phenolics compounds, but also exhibitedlower activities of superoxide dismutase, guaiacol peroxidase and polyphenol oxidase thusresulting in more serious oxidative damage and more curtained growth.
Resumo:
A method has been developed for the determination of interactions of metal ions and protein by using microdialysis sampling technique combined with pre-column derivation and reversed-phase ion-pair liquid chromatographic (HPLC analysis. Cu(II), Zn(II) and human serum albumin (HSA) were chosen as model metal ions and protein, respectively. The mixed solutions of metal ions and HSA with different molar ratios buffered with 0.1 M Tris-HCl containing 0.1 M NaCl at pH 7.43 were sampled with a mirodialysis probe by keeping perfusion rate at 1 mul/min and the temperature at 37 degreesC. The free concentrations of metal ions in microdialysates were assayed by precolumn derivatization with meso-tetra(4-sulfophenyl)-porphyrin (TPPS4) followed ion-pair HPLC analysis. The recovery (R) of microdialysis sampling was measured in vitro under similar conditions as 65.74% for Cu(II), 70.45% for Zn(II) with R.S.D. below 3.2%. The primary binding constants and number of binding site estimated by the Scatchard plot analysis are 5.04 x 10(6) M-1 and 0.85 for Cu(II), and 9.87 x 10(6) M-1 and 1.10 for Zn(II), respectively. The competition of Cu(II) and Zn(II) at the second binding site on HSA was investigated, and it was observed that there is a second site on HSA to bind Cu(II) and Zn(II), the affinity of Cu(II) is stronger than that of Zn(II) to this second site of HSA. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This review focuses on the synthesis, assembly, surface functionalization, as well as application of inorganic nanostructures. Electrochemical and wet- chemical methods are demonstrated to be effective approaches to make metal nanostructures under control without addition of a reducing agent or protecting agent. Owing to the unique physical and chemical properties of the nano-sized materials, novel applications are introduced using inorganic nanomaterials, such as electrocatalysis, photoelectricity, spectrochemistry, and analytical chemistry.