223 resultados para distributed feeback lasers
Resumo:
We have fabricated 1.3-mu m InAs-GaAs quantum-dot (QD) lasers with and without p-type modulation doping and their characteristics have been investigated. We find that introducing p-type doping in active regions can improve the temperature stability of 1.3-mu m InAs-GaAs QD lasers, but it does not, increase the saturation modal gain of the QD lasers. The saturation modal gain obtained from the two types of lasers is identical (17.5 cm(-1)). Moreover, the characteristic temperature increases as cavity length increases for the two types of lasers, and it improves more significantly for the lasers with p-type doping due to their higher gain.
Resumo:
This paper presents a new technique to generate microwave signal using an electro-absorption modulator (EAM) integrated with a distributed feedback (DFB) laser subject to optical injection. Experiments show that the frequency of the generated microwave can be tuned by changing the wavelength of the external laser or adjusting the bias voltage of the EAM. The frequency response of the EAM is studied and found to be unsmooth due to packaging parasitic effects and four-wave mixing effect occurring in the active layer of the DFB laser. It is also demonstrated that an EA modulator integrated in between two DFB lasers can be used instead of the EML under optical injection. This integrated chip can be used to realize a monolithically integrated tunable microwave source. (C) 2009 Optical Society of America
Resumo:
The characteristics of whispering-gallery-like modes in the equilateral triangle and square microresonators are introduced, including directional emission triangle and square microlasers connected to an output waveguide. We propose a photonic interconnect scheme by connecting two directional emission microlasers with an optical waveguide on silicon integrated circuit chip. The measurement indicates that the triangle microlasers can work as a resonance enhanced photodetector for optical interconnect.
Resumo:
High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.
Resumo:
A new method for fabricating electroabsorption modulator integrated with a distributed feedback laser (EML) was proposed. With the method we fabricated a selective area growth double stack active layer EML (SAG-DSAL-EML). Through comparing with other fabrication methods of EMLs, the characters and the merits of the new method presented in this paper were discussed.
Resumo:
We demonstrate the fabrication and characterization of photonic-crystal distributed-feedback quantum cascade laser emitting at 4.7 mu m. The tilted rectangular-lattice PCDFB structure was defined using a multi-exposure of two-beam holographic lithography. The devices exhibit the near-diffraction-limited beam emission with the full width at half maximum of the far-field divergence angles about 4.5 degrees and 2.5 degrees for stripe widths of 55 mu m and 95 mu m, respectively. Single-mode emission with a side mode suppression ratio of approximate to 20 dB is achieved in the temperature range (80-210 K). The single-facet output power is above 1 W for a 95 mu m x 2.5 mm laser bar at 85 K in pulsed operation. (C) 2009 Optical Society of America
Resumo:
We report on recent experimental results of the spontaneous antiphase dynamics that occurs in a laser-diode-pumped multimode passively Q-switched microchip Yb:YAG (where YAG is yttrium aluminum garnet) lasers with a saturable absorber GaAs. We observe that the pulse sequence of the first mode characterized by one, two, and three pulses as a group and all the modes display an antiphase state as the pumping ratio rises. We modify the multimode rate equations to account for nonlinear absorption due to GaAs in the presence of spatial hole burning. We perform numerical simulations based on the proposed rate equations and reproduce the observed antiphase state of two and three active modes.
Resumo:
A detailed model for semiconductor linear optical amplifiers (LOAs) with gain clamping by a vertical laser field is presented, which accounts the carrier and photon density distribution in the longitudinal direction as well as the facet reflectivity. The photon iterative method is used in the simulation with output amplified spontaneous emission spectrum in the wide band as iterative variables. The gain saturation behaviors and the noise figure are numerically simulated, and the variation of longitudinal carrier density with the input power is presented which is associated with the ON-OFF state of the vertical lasers. The results show that the LOA can have a gain spectrum clamped in a wide wavelength range and have almost the same value of noise figure as that of conventional semiconductor optical amplifiers (SOAs). Numerical results also show that an LOA can have a noise figure about 2 dB less than that of the SOA gain clamped by a distributed Bragg reflector laser.
Resumo:
A gain measurement technique, based on Fourier series expansion of periodically extended single fringe of the amplified spontaneous emission spectrum, is proposed for Fabry-Perot semiconductor lasers. The underestimation of gain due to the limited resolution of the measurement system is corrected by a factor related to the system response function. The standard deviations of the gain-reflectivity product under low noise conditions are analyzed for the Fourier series expansion method and compared with those of the Hakki-Paoli method and Cassidy's method. The results show that the Fourier series expansion method is the least sensitive to noise among the three methods. The experiment results obtained by the three methods are also presented and compared.
Resumo:
Quasi-continuous-wave operation of AlGaAs/GaAs-based quantum cascade lasers (lambda similar to 9 mu m) up to 165 K is reported. The strong temperature dependence of the threshold current density and its higher value in high duty cycle is investigated in detail. The self-heating effect in the active region is explored by changing the operating duty cycles. The degradation of lasing performance with temperature is explained. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We develop 5.5-mu m InxGa1-xAs/InyAl1-yAs strain-compensated quantum cascade lasers with InP and InGaAs cladding layers by using solid-source molecular-beam epitaxy. Pulse operation has been achieved up to 323 K (50 degrees C) for uncoated 20-mu m-wide and 2-mm-long devices. These devices display an output power of 36 mW with a duty cycle of 1% at room temperature. In continuous wave operation a record peak optical power of 10 mW per facet has been measured at 83 K.
Resumo:
Two novel methods for analyzing the parasitics of packaging networks are proposed based on the relations between the scattering parameters of a semiconductor laser before and after packaging, and the experiments are designed and performed using our methods. It is found that the analysis results of the two methods are in good agreement with the measurements. Either of the two methods can provide an alternative approach for characterizing the packaging parasitics for semiconductor lasers, and both are convenient due to the developed measurement techniques. (c) 2005 Wiley Periodicals, Inc.
Resumo:
We report the design, growth, fabrication, and characterization of a GaAs-based resonant-cavity-enhanced (RCE) GaInNAs photodetector operating at 1.55 mu m. The structure of the device was designed using a transfer-matrix method (TMM). By optimizing the molecular-beam epitaxy growth conditions, six GaInNAs quantum wells were used as the absorption layers. Twenty-five (25)- and 9-pair GaAs/AlAs-distributed Bragg reflectors were grown as the bottom and top mirrors. At 1.55 mu m, a quantum efficiency of 33% with a full width at half maximum of 10 nm was obtained. The dark current density was 3x10(-7) A/cm(2) at a bias of 0 V and 4.3x10(-5) A/cm(2) at a reverse bias of 5 V. The primary time response measurement shows that the device has a rise time of less than 800 ps. (c) 2005 American Institute of Physics.
Resumo:
We report on a VSAL structure fabricated by a 650 nm edge emitting laser diode with an Au-coated facet and an aperture size of 250 x 500 nm. The far field output power can maintain at 1 mW and the power density is 7.5 mW/mu m(2). Some properties of the VSAL including the threshold current change, the red-shift of the spectral position, and the strong relative-intensity-noise are presented. The physical mechanisms responsible for these phenomena are also discussed, which may contribute to the understanding and application of the potential device for near-field optics.
Resumo:
A comprehensive two-level numerical model is developed to describe carrier distribution in a quantum-dot laser. Light-emission spectra with different intraband relaxation rates (2ps, 7.5ps and 20ps) are calculated and analysed to investigate the influence of relaxation rates on performance of the quantum-dot laser. The results indicate that fast intraband relaxation favours not only the ground state single mode operation but also the higher injection efficiency.