210 resultados para GAS BURNERS
Resumo:
The transport property of a lateral two-dimensional paramagnetic diluted magnetic semiconductor electron gas under a spatially periodic magnetic field is investigated theoretically. We find that the electron Fermi velocity along the modulation direction is highly spin dependent even if the spin polarization of the carrier population is negligibly small. It turns out that this spin-polarized Fermi velocity alone can lead to a strong spin polarization of the current, which is still robust against the energy broadening effect induced by the impurity scattering. (c) 2006 American Institute of Physics.
Resumo:
We investigate theoretically the interplay between Zeeman splitting, Rashba spin-orbit interaction (RSOI), and Dresselhaus spin-orbit interaction (DSOI) and its influence on the magnetotransport property of two-dimensional electron gas (2DEG) at low temperature. Our theoretical results show that the nodes of the beating patterns of the magnetoresistivity rho(xx) for 2DEG with RSOI or DSOI alone depend sensitively on the total spin splitting induced by these three spin splitting mechanisms. It is interesting to find that the eigenstates in the presence of RSOI alone are connected with those in the presence of DSOI alone but with opposite Zeeman splitting by a time-reversal transformation. Consequently, the magnetoresistivities exhibit exactly the same oscillation patterns for these two cases. For strong RSOI or DSOI alone, the magneto-oscillation of rho(xx) shows two distinct periods. For 2DEG with both RSOI and DSOI, the beating patterns vanish for equal RSOI and DSOI strengths and vanishing Zeeman splitting. They will appear again, however, when Zeeman splitting or the difference between RSOI and DSOI strengths increases.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.
Resumo:
N-p-n Si/SiGe/Si heterostructure has been grown by a disilane (Si2H6) gas and Ge solid sources molecular beam epitaxy system using phosphine (PH3) and diborane (B2H6) as n- and p-type in situ doping sources, respectively. X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS) measurements show that the grown heterostructure has a good quality, the boron doping is confined to the SiGe base layer, and the Ge has a trapezoidal profile. Postgrowth P implantation was performed to prepare a good ohmic contact to the emitter. Heterojunction bipolar transistor (HBT) has been fabricated using the grown heterostructure and a common-emitter current gain of 75 and a cut-off frequency of 20 GHz at 300 K have been obtained. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Three n-p-n Si/SiGe/Si heterostructures with different layer thickness and doping concentration have been grown by a home-made gas source molecular-beam epitaxy (GSMBE) system using phosphine (PH3) and diborane (B2H6) as n-and p-type in situ doping sources, respectively. Heterojunction bipolar transistors (HBTs) have been fabricated using these structures and a current gain of 40 at 300 K and 62 at 77 K have been obtained. The influence of thickness and doping concentration of the deposited layers on the current gain of the HBTs is discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
As reported by other authors, we have also observed that the Si growth rate decreases with increasing phosphine (PH3) flow rate in gas source-Si molecular beam epitaxy using phosphorous (P) as a n-type dopant. Why small quantity PH3 can affect Si growth rate? Up to now, the quantitative characterization of PH3 flow influence on Si growth rate is little known. In this letter, the PH, influence will be analyzed in detail and a model considering strong P surface segregation and its absorption of hydrogen will be proposed to characterize the effect. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.
Resumo:
In situ doping for growth of n-p-n Si/SiGe/Si heterojuction bipolar transistor (HBT) structural materials in Si gas source molecular beam epitaxy is investigated. We studied high n-type doping kinetics in Si growth using disilane and phosphine, and p-type doping in SiGe growth using disilane, soild-Ge, and diborane with an emphasis on the effect of Ge on B incorporation. Based on these results, in situ growth of n-p-n Si/SiGe/Si HBT device structure is demonstrated with designed structural and carrier profiles, as verified from characterizations by X-ray diffraction, and spreading resistance profiling analysis. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Uniform and high phosphorous doping has been demonstrated during Si growth by GSMBE using disilane and phosphine. The p-n diodes, which consist of a n-Si layer and a p-SiGe layer grown on Si substrate, show a normal I-V characteristic. A roughening transition during P-doped Si growth is found. Ex situ SEM results show that thinner film is specular. When the film becomes thicker, there are small pits of different sizes randomly distributed on the flat surface. The average pit size increases, the pit density decreases, and the size distribution is narrower for even thicker film. No extended defects are found at the substrate interface or in the epilayer. Possible causes for the morphological evolution are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Gas source molecular beam epitaxy has been used to grow Si1-xGex alloys and Si1-xGex/Si multi-quantum wells (MQWs) on (100) Si substrates with Si2H6 and GeH4 as sources. Heterostructures and MQWs with mirror-like surface morphology, good crystalline qualify, and abrupt interfaces have been studied by a variety of in situ and ex situ techniques. The structural stability and strain relaxation in Si1-xGex/Si heterostructures have been investigated, and compared to that in the As ion-implanted Si1-xGex epilayers. The results show that the strain relaxation mechanism of the non-implanted Si1-xGex epilayers is different from that of the As ion-implanted Si1-xGex epilayers.
Resumo:
Photoluminescence (PL) investigation was carried out on GaInP/GaAs multiple quantum wells structures grown on (001) and (311) B surfaces of GaAs by gas source molecular beam epitaxy. Superlattice structures of GaAs/GaInP grown on (001) GaAs substrate were also studied in comparison. Deep-level luminescence was seen to dominate the PL spectra from the quantum wells and superlattice structures that were grown on (001) GaAs substrate. In contrast, superior optical properties were exhibited in the same structures grown on (311) B GaAs surfaces. The results suggested that GaAs/GaInP quantum well structures on (311) B oriented substrates could efficiently suppress the deep-level emissions, result in narrower PL peaks indicating smooth interfaces. (C) 1998 American Institute of Physics.
Resumo:
High-quality GaN epilayers have been grown by gas source molecular beam epitaxy using ammonia as the nitrogen source. During the growth, the growth rate is up to 1.2 mu m/h and can be varied from 0.3 to 1.2 mu m. The unintentional n-type doping as low as 7x10(17) cm(-3) was obtained at room temperature. Low-temperature photoluminescence spectrum was dominated by near-edge emission without deep-level related luminescence, indicative of high-quality epilayers. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
GaN epilayers on sapphire (0001) substrates were grown by the gas source molecular beam epitaxy (GSMBE) method using ammonia (NH,) gas as the nitrogen source. Properties of gallium nitride (GaN) epilayers grown under various growth conditions were investigated. The growth rate is up to 0.6 mu m/h in our experiments. Cathodoluminescence, photoluminescence and Hall measurements were used to characterize the films. It was shown that the growth parameters have a significant influence on the GaN properties. The yellow luminescence was enhanced at higher growth temperature. And a blue emission which maybe related to defects or impurity was observed. Although the emission at 3.31 eV can be suppressed by a low-temperature buffer layer, a high-quality GaN epilayer can be obtained without the buffer layer. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Strain relaxation in the As ion implanted Si0.57Ge0.43 epilayers was studied by double-crystal x-ray diffractometry and transmission electron microscopy, and was compared to that in the nonimplanted Si0.57Ge0.43 epilayers. Experimental results show that after rapid thermal annealing (RTA) the x-ray linewidth of the As+-implanted Si0.57Ge0.43 epilayers is narrower than that of the nonimplanted epilayers, and than that of the partially relaxed as-grown samples, which is due primarily to low density of misfit dislocations in the As+-implanted SiGe epilayers. RTA at higher than 950 degrees C results in the formation of misfit dislocations for the nonimplanted structures, and of combinations of dislocations and precipitates (tentatively identified as GeAs) for the As+-implanted epilayers. The results mean that the strain relaxation mechanism of the As+-implanted Si1-xGex epilayers may be different from that of the nonimplanted Si1-xGex epilayers. (C) 1998 American Institute of Physics.