232 resultados para Emitter spacing
Resumo:
A transmission electron microscopy study of triple-ribbon contrast features in a ZnTe layer grown epitaxially on a vicinal GaAs (001) substrate is reported. The ribbons go through the layer as threading dislocations near the [<(11)over bar 2>](111) or [112](<(11)over bar 1>) directions. Each of these (with a 40 nm width) has two narrow parts enclosed by three partial dislocations (with a 20 nm spacing). By contrast analysis and contrast simulation, the ribbons have been shown to be composed of two partially overlapping stacking faults. Their origin is attributed to a forced reaction between two crossing perfect misfit dislocations.
Resumo:
Deep Level Transient Spectroscopy (DLTS) has been applied to investigate the electronic properties of self-organized InAs quantum dots. The energies of electronic ground states of 2.5ML and 1.7ML InAs quantum dots (QDs) with respect to the conduction band of bulk GaAs are about 0.21 eV and 0.09 eV, respectively. We have found that QDs capture electrons by lattice relaxation through a multi-phonon emission process. The samples are QDs embedded in superlattices with or without a 500 Angstrom GaAs spacing layer between every ten periods of a couple of GaAs and InAs layers. The result shows that the density of dislocations in the samples with spacer layers is much lower than in the samples without the spacer layers.
Resumo:
An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.
Resumo:
Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A compact polarization-insensitive 8x8 arrayed waveguide grating with 100GHz channel spacing at 1.55 mu m is presented on the material of silicon on insulator (SOI). Increasing the epitaxial layer thickness can reduce the birefringence of the waveguide, but the wvaeguide's bend radius also increases at the same time. We choose the SOI wafer with 3.0 mu m epitaxial layer to reduce the device's size and designed the appropriate structure of rib wave-guides to eliminate the polarization dependant wavelength shift. Compared to the other methods of eliminating the polarization dependant wavelength shift, the method is convenient and easy to control the polarization without additional etching process. The index differences between TE0 and TM0 of straight and bend waveguides are 1.4x10(-5) and 3.9x10(-5), respectively. The results showed that the polarization dependant wavelength shift is 0.1nm, and the device size is 1.5x1.0 cm(2).
Resumo:
A new material structure with Al0.22Ga0.78As/In0.15Ga0.85As/GaAs emitter spacer layer and GaAs/In0.15Ga0.85As/GaAs well for resonant tunneling diodes is designed and the corresponding device is fabricated. RTDs DC characteristics are measured at room temperature. Peak-to-valley current ratio (PVCR) is 7.44 for RTD Analysis on these results suggests that the material structure will be helpful to improve the quality, of RTD.
Resumo:
Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.
Resumo:
Radiant heat conversion performance dominated by the active layer of Ga0.84In0.16As0.14Sb0.86 diode has been systematically investigated based on an analytic absorption spectrum, which is suggested here by numerically fitting the limited experimental data. For the concerned diode configuration, our calculation demonstrates that the optimal base doping is 3-4 x 10(17) cm(-3), which is less sensitive to the variation of the external radiation spectrum. Given the scarcity of the alloy elements, an economical device configuration of the 0.2-0.6 mu m emitter and the 4-6 mu m base would be particularly acceptable because the corresponding conversion efficiency cannot exhibit discouraging degradation in comparison to the one for the optimal structure, the thickness of which may be up to 10 mu m. More importantly, the method we suggested here to calculate alloy absorption can be easily transferred to other composition, thus bringing great convenience for design or optimization of the optoelectronic device formed by these alloys.
Resumo:
A novel dual-wavelength (DW) sampled fiber Bragg grating (SFBG) is proposed and demonstrated for the first time to the author's best knowledge. This kind of SFBG can realize a DW operation with uniform reflection peaks rather than multiple nonuniform peaks shown in conventional SFBGs. Based on the designed SFBG, we have proposed a novel L-band DW erbium-doped fiber laser, which has such a unique merit that the spacing of the two wavelengths keeps unchanged during tuning laser.
Resumo:
A kind of ultra-narrow dual-channel filter is proposed in principle and demonstrated experimentally. This filter is designed by means of two sampled fibre Bragg gratings (SFBGs), where one is periodic 0-pi sampling and the other is symmetrical spatial sampling. The former can create two stopbands in the transmission spectra and the latter can produce two ultra-riarrow passbands. Our filter has the 3-dB bandwidth of about 1 pm, whose value is two orders of magnitude less than the bandwidth of the traditional SFBG filters. The proposed filter has a merit that the channel spacing remains unchanged when tuning the filter.
Resumo:
With the assistance of a kind of photonic Robin Hood that is originated from four-wave mixing in a dispersion-flattened high-nonlinearity photonic-crystal fibre, a novel dual-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated by using a sampled fibre Bragg grating. The experiments show that, due to the contribution of the photonic Robin Hood, the proposed fibre laser has the advantage of excellent uniformity, high stability and stable operation at room temperature. Our dual-wavelength EDF laser has the unique merit that the wavelength spacing remains unchanged when tuning the two wavelengths of laser, and this laser is simpler and more stable than the laser reported by Liu et al. [Opt. Express, 13 142 (2005)].
Resumo:
A novel grating structure is proposed and demonstrated to obtain stable dual-wavelength (DW) distributed-feedback (DFB) fiber lasers at room temperature. The proposed grating is based on a symmetrical structure, where one half is periodically sampled by "0"-to-"pi" period and the other half is done by "pi"-to-"0" period. This structure can create two separated resonance cavities and hence achieve the stable DW lasing operation. By fabricating the proposed grating on a piece of Er: Yb-codoped fiber, we experimentally obtain a stable DW-DFB fiber laser with wavelength spacing of similar to 440 pm at room temperature.
Resumo:
A kind of microstructured polymer optical fiber with elliptical core has been fabricated by adopting in-situ chemical polymerization technology and the secondary sleeving draw-stretching technique. Microscope photography demonstrates the clear hole-structure retained in the fiber. Though the holes distortion is visible, initial laser experiment indicates that light can be strongly confined in the elliptical core region, and the mode field is split obviously and presents the multi-mode characteristic. Numerical modeling is carried out for the real fiber with the measured parameters, including the external diameter of 150 pin, the average holes diameter of 3.3 mu m, and the average hole spacing of 6.3 mu m. by using full-vector plane wave method. The guided mode fields of the numerical simulation are consistent with the experiment result. This fiber shows the strong multi-mode and weak birefringence in the visible and near-infrared band, and has possibility for achieving the fiber mode convertors, mode selective couplers and so on.
Resumo:
为研究齿形、梯形以及矩形流道转角变化对水力性能的影响,采用Fluent软件对不同形状下不同转角的流道进行了数值模拟。研究结果表明:当其他条件相同时,转角的变化与流量系数、流态指数呈负相关,其变化对梯形流道灌水器的流量系数影响最大,最多下降了19.03%,齿形流道次之,下降了10.14%,矩形流道是梯形流道转角角度增加的延伸,具有相同的水力性能变化规律;随着角度的增加,梯形流道总的局部水头损失系数最多增加了32.5%,而齿形流道总的局部水头损失系数最多增加了23.4%,变化都很明显;压力较高时,摩阻系数基本保持不变,流体为紊流状态。
Resumo:
从2003年3月到2006年5月期间,在云南中部无量山大寨子(24°21′N, 100°42′E)对一个黑长臂猿种群进行了研究。2003年3月至2004年3月主要研究了 3个群体的鸣叫行为。2005年3月一个群体被习惯化,随后对其进行了14个月的连 续观察。在此期间,主要对食性、时间分配、栖息地选择和利用、过夜地及过夜 树的选择等方面进行了研究。这些资料将有助于了解黑长臂猿对其高海拔、高纬 度、季节性变化明显栖息地的适应性,并且对了解长臂猿独特的社会结构具有重 要意义。另外,本研究结合获得的行为生态方面的数据,通过漩涡模型(VORTEX) 对该种群未来动态进行了模拟,对大寨子种群的保护和发展提出了保护建议。 黑长臂猿叫声在所有长臂猿中频率最高。成年雄性能发出boom、简单重复 音节和调节音节;成年雌性只能发出成功的激动鸣叫和失败的激动鸣叫。两者互 相配合组成结构复杂的二重唱,配对个体很少单独鸣叫,青年个体经常会加入二 重唱。同一群内两个成年雌性多数时候一起鸣叫。配对个体平均两天鸣叫一次 (53%),每次鸣叫平均持续时间12.9 分钟,雌性激动鸣叫4.6 次,激动鸣叫的 平均时间间隔为115 秒,91.5%的鸣叫发生在日出前半小时和日出后3 小时之间。 通过对相邻群体间鸣叫行为的分析,结果发现相邻群体倾向于不在同一天鸣叫, 如果同一天鸣叫,鸣叫的时间间隔显著长于不在同一天鸣叫的时间间隔,这些结 果不支持鸣叫具有调节群体空间距离的功能(inter-group spacing)的假说。雄性 倾向选择一个区域内最高的树进行鸣叫,这可能是为了声音的远距离传播。另外 雄性对鸣叫树的选择也兼顾了安全因素。通过比较鸣叫前后个体间的距离,黑长 臂猿的鸣叫具有群内通讯的功能,鸣叫后个体间的距离显著短于鸣叫前的距离。 虽然鸣叫树的分布与食物斑块的分布在不同海拔段和不同网格内都呈现出了高 度的相关性,但不能确定黑长臂猿在食物斑块附近进行鸣叫就是为了对食物资源 进行防御。 利用扫描法对研究群体的食性和时间分配进行了研究。结果显示研究群体共 取食77 种植物和至少6 种动物,其中10 种重要食物占到取食比例的76.7%。在 10396 次确定食物类别的记录中,除无花果外的其它果实占25.5%,藤子叶和芽占21.0%,树叶和芽占19.2%,无花果占18.6%,花占9.1%,寄生植物的叶占6.3%, 另外其它食物占0.3%。黑长臂猿的食性具有明显的日变化和季节性变化。与其 它长臂猿相比,黑长臂猿的食性更加广泛。虽然黑长臂猿进食叶(藤子的叶和芽、 树叶和芽、寄生植物的叶)的比例稍多于进食果实(无花果和其它果实)的比例, 但当果实丰富时,它们仍然优先选择果实。 黑长臂猿平均在日出后33 分钟离开过夜树,在日落前128 分钟进入过夜树, 平均每天活动518 分钟。活动期间,黑长臂猿用于休息的时间最多,达到40.0%, 其次是取食28.7%,排在第三的是移动19.8%,排在第四的是觅食占到6.1%,鸣 叫占2.6%,玩耍和其它活动一共占活动时间的2.8%。时间分配具有明显的日变 化和季节性变化。食物和温度因素是影响黑长臂猿时间分配季节性变化的最主要 的原因。 群体一共利用129 个1 公顷的网格,如果包含在活动路线内的空隙,活动范 围达到151 公顷,主要由3 个大的山沟组成。黑长臂猿平均每天移动1391 米, 进入9 个网格,连续两天倾向于利用家域中的同一条山沟。群体平均每月仅利用 家域的19%~50%,集中利用家域中的小部分区域,除2 月份外群体总是选择利 用原始常绿阔叶林。形成这种现象的原因主要与食物的分布及其季节性变化有 关、并且与该群生活地区的地形有关。 黑长臂猿喜欢选择高大的,生长在陡坡上的树过夜,群体一般形成4 个不同 的小单元过夜(青年个体与成年雄性睡在一起,两个成年雌性与未独立的婴猿分 别睡在一起,亚成年雄性单独过夜),过夜时总是快速进入过夜树,然后立即安 静下来,利用很多棵不同的过夜树,并且间隔很长时间后才重复利用,这些行为 都是为了避免被捕食者发现和攻击。群体喜欢在山坡上过夜,并且在冬天喜欢选 择在长有寄生植物的大树枝上过夜,这些行为可能与研究地点冬天的低气温有 关。此外,过夜树的选择可能兼顾舒适和方便寻找食物的功能。 通过获得的生态学资料,结合近缘种生态学参数,利用漩涡模型(VORTEX) 对该种群未来动态进行了模拟。结果显示:大寨子亚种群是一个具有很强的潜在 繁殖力的种群,如果没有偷猎,亚种群在100a 之内不会灭绝,并且能迅速达到 环境容纳量。但是每年如果有1 只成年雄性和1 只成年雌性被猎杀,该种群将会在第78a 灭绝,且灭绝概率为100%。不同程度的死亡率对种群影响不大,但高 死亡率显著延缓了种群到达环境容纳量的时间。环境容纳量对种群遗传多样性损 失具有重要的影响,在没有猎杀的情况下,种群的长期存活需要一个较大的环境 容纳量。因此,在黑长臂猿受到严格保护、且栖息地主要在保护区内的今天,严 密监控火灾的发生,限制牲畜进入林区等人为干扰的影响,保护好黑长臂猿栖息 地是首要工作之一。但如果能使其栖息地周围的森林植被得到恢复,增加其栖息 范围,将有利于该地区黑长臂猿的发展。