176 resultados para Ionic selectivity
Resumo:
We have investigated systematically the morphology of thin films spin-coated from solutions of a semicrystalline diblock copolymer, poly(L-lactic acid)-block-polystyrene (PLLA-b-PS), in solvents with varying selectivity. In neutral solvents (chloroform and tetrahydrofuran (THF)), a spinodal-like pattern was obtained and the pattern boundary was sharpened by diluting the solution. Meanwhile, loose spherical associates, together with larger aggregates composed of these associates by unimer bridges, formed partly due to crystallization of the PLLA blocks in relatively concentrated solutions. In slightly PS-selective solvent (e.g., benzene), both loose and compact spherical micelles were obtained, depending on the polymer concentration, coexisting with unimers. When enhancing the selectivity with mixed solvents, for example, mixing the neutral solvent and the slightly selective solvent with a highly PS-selective solvent, CS2, loose assemblies (nanorods in CS2/THF mixtures and polydisperse aggregates in CS2/benzene mixtures) and well-developed lamellar micelles were obtained.
Resumo:
A novel room temperature ionic liquid (RTIL) has been prepared containing a cyclic hexaalkylguanidinium cation. The selective oxidation of a series of substituted benzyl alcohols has been carried out in it, with sodium hypochlorite as the oxidant. The RTIL acts as both phase transfer catalyst (PTC) and solvent. The ionic liquid could be recycled after extraction of the benzaldehyde product with ether.
Resumo:
The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced in ionic liquid (2). The same reaction in [bmim][PF6](1)(where bmim = 1-butyl-3-methylimidazolium) was also studied. It was found that as a reaction medium ionic liquid (2) is better than (1) for nucelophilic displacement reactions.
Resumo:
The product selectivity can be controlled by adding acetic acid in feed over vanadium phosphate (VPO) in gas phase oxidative dehydrogenation (ODH), in which cyclohexane and cyclohexene are oxidized to cyclohexene and 1,3-cyclohexadiene (1,3-CHD), respectively, at almost 100% selectivity. This approach is also an efficient method to capture the very unstable intermediates in the mechanism study.
Resumo:
Competition dialysis was used to study the interactions of 13 substituted aromatic diamidine compounds with 13 nucleic acid structures and sequences. The results show a striking selectivity of these compounds for the triplex structure poly dA:(poly dT)(2), a novel aspect of their interaction with nucleic acids not previously described. The triplex selectivity of selected compounds was confirmed by thermal denaturation studies. Triplex selectivity was found to be modulated by the location of amidine substiuents on the core phenyl-furan-phenyl ring scaffold. Molecular models were constructed to rationalize the triplex selectivity of DB359, the most selective compound in the series. Its triplex selectivity was found to arise from optimal ring stacking on base triplets, along with proper positioning of its amidine substituents to occupy the minor and the major-minor grooves of the triplex. New insights into the molecular recognition of nucleic acid structures emerged from these studies, adding to the list of available design principles for selectively targeting DNA and RNA.
Resumo:
Novel proton-conducting gelatinous electrolytes templated by room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF(4)) have been prepared in methylsisesquioxane backbone containing H3PO4, and the influences of the RTIL on the structure, morphology, thermal stability, and electrochemical properties of the gelatinous electrolytes have been examined. X-ray diffraction and scanning electron microscopy proved that BMImBF(4) acted as structure-directing template during the sol-gel process of methyl-trimethoxysilane. X-ray photoelectron spectra and infrared spectroscopy demonstrated that the hydrogen-bonding was formed between BMImBF(4) and H3PO4. The electrolytes had good thermal stability up to 300 degreesC and showed superior mechanical and electrochemical properties. A room-temperature conductivity of 1.2 x 10(-3) S cm(-1) was obtained for the electrolyte at the molar ratio of RTIL/Si/H3PO4 0.3/1/1, and its electrochemical window was up to 1.5 V.
Resumo:
The use of room-temperature ionic liquids (RTILs) as media for electrochemical application is very attractive. In this work, the electrochemical deposition of silver was investigated at a glassy carbon electrode in hydrophobic 1-n-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) and hydrophilic 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) RTILs and in KNO3 aqueous solution by cyclic voltammetric and potentiostatic transient techniques. The voltammograms showed the presence of reduction and oxidation peaks associated with the deposition and dissolution of silver from AgBF4 in both BMIMPF6 and BMIMBF4, resembling the redox behavior of AgNO3 in KNO3 aqueous solution. A crossover loop was observed in all the cyclic voltammograms of these electrochemical systems, indicating a nucleation process. From the analysis of the experimental current transients, it was shown that the electrochemical deposition process of silver in these media was characteristic of 3D nucleation with diffusion-controlled hemispherical growth, and the silver nucleation closely followed the response predicted for progressive nucleation in BMIMPF6 and instantaneous nucleation in KNO3 aqueous solution, respectively.
Resumo:
We report here that a cubane-like europium-L-aspartic acid complex at physiological pH can discriminate between DNA structures as judged by the comparison of thermal denaturation, binding stoichiometry, temperature-dependent fluorescence enhancement, and circular dichroism and gel electrophoresis studies. This complex can selectively stabilize non-B-form DNA polydApolydT but destabilize polydGdCpolydGdC and polydAdTpolydAdT. Further studies show that this complex can convert B-form polydGdCpolydGdC to Z-form under the low salt condition at physiological temperature 37 degrees C, and the transition is reversible, similar to RNA polymerase, which turns unwound DNA into Z-DNA and converts it back to B-DNA after transcription. The potential uses of a left-handed helix-selective probe in biology are obvious. Z-DNA is a transient structure and does not exist as a stable feature of the double helix. Therefore, probing this transient structure with a metal-amino acid complex under the low salt condition at physiological temperature would provide insights into their transitions in vivo and are of great interest.
Resumo:
Bronsted acid-base ionic liquids (GILs) based on guanidine and acetic acid are efficient reaction media for palladium-catalyzed Heck reactions. They offer the advantages of high activity and reusability. GIL2 plays multiple roles in the reaction: it could act as solvent, as a strong base to facilitate beta-hydride elimination, and as a ligand to stabilize activated Pd species.
Resumo:
The carbon nanotubes (CNTs) based microelectrode (ME) by modifying CNTs-room temperature ionic liquid (IL) gel at carbon fiber microelectrode (CFME) is easily prepared, which exhibits the typical cyclic voltammogram of ME with sigmoid shape and possesses good stability, high conductivity and enlarged current response and tunable dimension. The direct electron transfer of glucose oxidase has been greatly promoted showing reversible electrochemical behavior even at high scan rate. In addition, the CNTs based ME also exhibits effectively electrocatalytic oxidized ability to biomolecules, e.g. dopamine (DA), ascorbic acid (AA) and dihydronicotinamide adenine dinucleotide. The obvious separation of oxidized peak potential for DA and AA makes it possible to selectively determine DA in presence of AA. These phenomena show that the CNTs based ME has promising potential to detect various species in vivo and in vitro.
Resumo:
A novel dissolving process for chitin and chitosan has been developed by using the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]Cl) as a solvent, and a novel application of chitin and chitosan as substitutes for amino-functionalized synthetic polymers for capturing and releasing CO2 has also been exploited based on this processing strategy.
Resumo:
A new compound Ce(6-x)Ln(x)MoO(15-delta) has been synthesized by wet-chemistry method. Their crystal structure and oxide ionic conductivity were characterized by powder X-ray diffraction, Raman, IR spectrum and A.C. impedance technique. The XRD results showed that Ce6MO15-delta, Ce(5)LnMoO(15-delta) have cubic symmetry with Fm3m space group. The refined lattice parameters showed that their lattice constants decrease with the decrease of the ionic radius of Ln(3+). The electrochemical measurements showed that the ionic conductivity of resulting oxides Ce(6-x)Ln(x)MoO(15-delta) have an enhance, which may be a kind of promising material for SOFCs.
Resumo:
This paper reports on a successful application of the concept of nanoreactors to effectively controlling the selectivity of the free radical grafting of maleic anhydride (MAH) onto polypropylene (PP) in the melt, an industrially relevant process. More specifically, a free radical initiator of type ROOR was first confined into (or encapsulated by) the galleries of an organically modified montmorillonite (o-MMT) whose interdistance was 2.4 nm. Primary free radicals (RO center dot) formed inside the o-MMT galleries had to diffuse out before they could react with the PP backbone. The controlled release of the primary free radicals significantly increased the grafting degree of MAH onto PP and greatly reduced the level of the chain scission of the latter. Those results were better understood by electron spin resonance studies on model systems and by Monte Carlo simulations.
Resumo:
The effect of adding acetic acid on the product distribution in gas phase oxidative dehydrogenation of cyclohexane over alpha(1)-VOPO4 catalyst was investigated. The role of acetic acid in the reaction process was put forward. The proposed mechanism is that acetic acid take precedence of cyclohexane adsorbing on the active sites of alpha(1)-VOPO4 catalyst to form isolated active site. Thus, cyclohexene species can desorb quickly from the active sites, avoiding its deep oxidation dehydrogenation. Almost 100% selectivity to cyclohexene could be obtained when the molar ratio of acetic acid to cyclohexane was 12.9:1 at 450 degrees C, the conversion of cyclohexane was 6.9%.