188 resultados para Distributed Bragg reflector
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new method for fabricating electroabsorption modulator integrated with a distributed feedback laser (EML) was proposed. With the method we fabricated a selective area growth double stack active layer EML (SAG-DSAL-EML). Through comparing with other fabrication methods of EMLs, the characters and the merits of the new method presented in this paper were discussed.
Resumo:
We demonstrate the fabrication and characterization of photonic-crystal distributed-feedback quantum cascade laser emitting at 4.7 mu m. The tilted rectangular-lattice PCDFB structure was defined using a multi-exposure of two-beam holographic lithography. The devices exhibit the near-diffraction-limited beam emission with the full width at half maximum of the far-field divergence angles about 4.5 degrees and 2.5 degrees for stripe widths of 55 mu m and 95 mu m, respectively. Single-mode emission with a side mode suppression ratio of approximate to 20 dB is achieved in the temperature range (80-210 K). The single-facet output power is above 1 W for a 95 mu m x 2.5 mm laser bar at 85 K in pulsed operation. (C) 2009 Optical Society of America
Resumo:
We present a novel 800-nm Bragg-mirror-based semiconductor saturable absorption mirror with low temperature and surface state hybrid absorber, with which we can realize the passive soliton mode locking of a Ti:sapphire laser pumped by 532-nm green laser which produces pulses as short as 37 fs. The reflection bandwidth of the mirror is 30 nm and the pulse frequency is 107 MHz. The average output power is 1.1 W at the pump power of 7.6 W.
Resumo:
Some integrated optics devices can be made based on the interdigital electro-optic Bragg diffraction grating. The point-matching method is extended to the analysis of interdigital electro-optic Bragg diffraction gratings. This method provides a simple and fast analytic expression of the electric field in the structure. The field distributions are used to calculate the optical and electrical characteristic parameters of the gratings. The effects of finite conductor thickness have been taken into account in the analysis. It is shown that the simulation results agree well with the measured data.
Resumo:
A new packaged fiber Bragg grating using bimetal cantilever beam as the strain agent is presented. The grating is two-point attached on one specific surface of the bimetal beam which consists of two metallic material with different thermal-expansion coefficient. Thereby the grating can be compressed or stretched along with the cantilever beam while temperature varies and temperature compensation can be realized. At the same time, grating chirping can be avoided for the particular attaching method. Experiment results demonstrated that the device is able to automatically compensate temperature induced wavelength shift. The temperature dependence of Bragg wavelength reduced to -0.4 pm/degrees C over the temperature range from -20 to 60 degrees C. This fiber grating package technique is cost effective and can be used in strain sensing. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Ridge-waveguide AlGaInAs/AlGaAs distributed feedback lasers with lattice-matched GaInP gratings were fabricated and their light-current characteristics, spectrum and far-field characteristics were measured. On the basis of our experimental results we analyze the effect of the electron stopper layer on light-current performance using the commercial laser simulation software PICS3D. The simulator is based on the self-consistent solution of drift diffusion equations, the Schrodinger equation, and the photon rate equation. The simulation results suggest that, with the use of a 80 nm-width p-doped Al0.6GaAs electron stopper layer, the slope efficiency can be increased and the threshold current can be reduced by more than 10 mA.
Resumo:
Usually GaAs/AlGaAs is utilized as an active layer material in laser diodes operating in the spectral range of 800 850 nm. In this work, in addition to a traditional unstrained GaAs/AlGaAs distributed feedback (DFB) laser diode, a compressively strained InGaAlAs/AlGaAs DFB laser diode is numerically investigated in characteristic. The simulation results show that the compressively strained DFB laser diode has a lower transparency carrier density, higher gain, lower Auger recombination rate, and higher stimulated recombination rate, which lead to better a device performance, than the traditional unstrained GaAs/AlGaAs DFB laser diode.
Resumo:
Coupling coefficient is an important parameter for distributed feedback lasers. Modified coupled-wave equations are used to calculate the effect of grating shape on coupling coefficient of the second-order gratings. Corresponding devices demonstrate that the maximum kink-free power per facet reaches 50 mW and the sidemode suppression ratio is 36 dB.
Resumo:
Unselective regrowth for fabricating 1.5-mu m InGaAsP multiple-quantum well (MQW) distributed-feedback (DFB) buried heterostructure (BH) lasers is developed. The experimental results exhibit superior characteristics, such as a low threshold of 8.5 mA, high slope efficiency of 0.55 mW/mA, circular-like far-field patterns, the narrow line-width of 2.5 MHz, etc. The high performance of the devices effectively proves the feasibility of the new method to fabricate buried heterostructure lasers. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
1.6-1.7 mu m highly strained InGaAs/InGaAsP distributed feedback lasers was grown and fabricated by low pressure mentalorganic chemical vapor deposition. High quality highly strained InGaAs/InP materials were obtained by using strain buffer layer. Four pairs of highly strained quantum wells were used in the devices and carrier blocking layer was used to improve the temperature characteristics of the devices. The uncoated 1.66 mu m and 1.74 mu m lasers with ridge wave guide 3 mu m wide have low threshold current (< 15mA) and high output power (> 14mW at 100mA). In the temperature range from 10 degrees C to 40 degrees C, the characteristic temperature T-0 of the 1.74 mu m laser is 57K, which is comparable to that of the 1.55 mu m-wavelength InGaAsP/InP-DFB laser.
Resumo:
The authors present the observation of wide transmission dips in a microring channel drop filter by two-dimensional finite-difference time-domain simulation. The authors show that distributed mode coupling between the input waveguide and the resonator results in the oscillations of the coupling efficiency and the envelope of transmission spectra with wavelength. The critical coupling as the light just passing through the coupling region is important for optimizing related devices. If the width of the input waveguide is different from that of the ring resonator, the phenomenon can be greatly reduced. (c) 2006 American Institute of Physics.
Resumo:
In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The growth pressure and mask width dependent thickness enhancement factors of selective-area MOCVD. grow th were investigated in this article. A, high enhancement of 5.8 was obtained at 130 mbar with the mask width of 70 mum. Mismatched InGaAsP (-0.5%) at the maskless region which could ensure the material at butt-joint region to be matched to InP was successively grown by controlling the composition and mismatch modulation in the selective-area growth. The upper optical confinement layer and the butt-coupled tapered thickness waveguide were regrown simultaneously in separated confined heterostructure 1.55 gm distributed feedback laser, which not only offered the separated optimization of the active region and the integrated spotsize converter, but also reduced the difficulty of the butt-joint selective regrowth. A narrow beam of 9degrees and 12degrees in the vertical and horizontal directions, a low threshold current of 6.5 mA was fabricated by using this technique. (C) 2003 Elsevier Science B.V. All rights reserved.