8 resultados para Distributed Bragg reflector
em CaltechTHESIS
Resumo:
The first part of this work describes the uses of aperiodic structures in optics and integrated optics. In particular, devices are designed, fabricated, tested and analyzed which make use of a chirped grating corrugation on the surface of a dielectric waveguide. These structures can be used as input-output couplers, multiplexers and demultiplexers, and broad band filters.
Next, a theoretical analysis is made of the effects of a random statistical variation in the thicknesses of layers in a dielectric mirror on its reflectivity properties. Unlike the intentional aperiodicity introduced in the chirped gratings, the aperiodicity in the Bragg reflector mirrors is unintentional and is present to some extent in all devices made. The analysis involved in studying these problems relies heavily on the coupled mode formalism. The results are compared with computer experiments, as well as tests of actual mirrors.
The second part of this work describes a novel method for confining light in the transverse direction in an injection laser. These so-called transverse Bragg reflector lasers confine light normal to the junction plane in the active region, through reflection from an adjacent layered medium. Thus, in principle, it is possible to guide light in a dielectric layer whose index is lower than that of the surrounding material. The design, theory and testing of these diode lasers are discussed.
Resumo:
In the first part of this thesis a study of the effect of the longitudinal distribution of optical intensity and electron density on the static and dynamic behavior of semiconductor lasers is performed. A static model for above threshold operation of a single mode laser, consisting of multiple active and passive sections, is developed by calculating the longitudinal optical intensity distribution and electron density distribution in a self-consistent manner. Feedback from an index and gain Bragg grating is included, as well as feedback from discrete reflections at interfaces and facets. Longitudinal spatial holeburning is analyzed by including the dependence of the gain and the refractive index on the electron density. The mechanisms of spatial holeburning in quarter wave shifted DFB lasers are analyzed. A new laser structure with a uniform optical intensity distribution is introduced and an implementation is simulated, resulting in a large reduction of the longitudinal spatial holeburning effect.
A dynamic small-signal model is then developed by including the optical intensity and electron density distribution, as well as the dependence of the grating coupling coefficients on the electron density. Expressions are derived for the intensity and frequency noise spectrum, the spontaneous emission rate into the lasing mode, the linewidth enhancement factor, and the AM and FM modulation response. Different chirp components are identified in the FM response, and a new adiabatic chirp component is discovered. This new adiabatic chirp component is caused by the nonuniform longitudinal distributions, and is found to dominate at low frequencies. Distributed feedback lasers with partial gain coupling are analyzed, and it is shown how the dependence of the grating coupling coefficients on the electron density can result in an enhancement of the differential gain with an associated enhancement in modulation bandwidth and a reduction in chirp.
In the second part, spectral characteristics of passively mode-locked two-section multiple quantum well laser coupled to an external cavity are studied. Broad-band wavelength tuning using an external grating is demonstrated for the first time in passively mode-locked semiconductor lasers. A record tuning range of 26 nm is measured, with pulse widths of typically a few picosecond and time-bandwidth products of more than 10 times the transform limit. It is then demonstrated that these large time-bandwidth products are due to a strong linear upchirp, by performing pulse compression by a factor of 15 to a record pulse widths as low 320 fs.
A model for pulse propagation through a saturable medium with self-phase-modulation, due to the a-parameter, is developed for quantum well material, including the frequency dependence of the gain medium. This model is used to simulate two-section devices coupled to an external cavity. When no self-phase-modulation is present, it is found that the pulses are asymmetric with a sharper rising edge, that the pulse tails have an exponential behavior, and that the transform limit is 0.3. Inclusion of self-phase-modulation results in a linear upchirp imprinted on the pulse after each round-trip. This linear upchirp is due to a combination of self-phase-modulation in a gain section and absorption of the leading edge of the pulse in the saturable absorber.
Resumo:
The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.
Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.
The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.
Resumo:
The work presented in this thesis revolves around erasure correction coding, as applied to distributed data storage and real-time streaming communications.
First, we examine the problem of allocating a given storage budget over a set of nodes for maximum reliability. The objective is to find an allocation of the budget that maximizes the probability of successful recovery by a data collector accessing a random subset of the nodes. This optimization problem is challenging in general because of its combinatorial nature, despite its simple formulation. We study several variations of the problem, assuming different allocation models and access models, and determine the optimal allocation and the optimal symmetric allocation (in which all nonempty nodes store the same amount of data) for a variety of cases. Although the optimal allocation can have nonintuitive structure and can be difficult to find in general, our results suggest that, as a simple heuristic, reliable storage can be achieved by spreading the budget maximally over all nodes when the budget is large, and spreading it minimally over a few nodes when it is small. Coding would therefore be beneficial in the former case, while uncoded replication would suffice in the latter case.
Second, we study how distributed storage allocations affect the recovery delay in a mobile setting. Specifically, two recovery delay optimization problems are considered for a network of mobile storage nodes: the maximization of the probability of successful recovery by a given deadline, and the minimization of the expected recovery delay. We show that the first problem is closely related to the earlier allocation problem, and solve the second problem completely for the case of symmetric allocations. It turns out that the optimal allocations for the two problems can be quite different. In a simulation study, we evaluated the performance of a simple data dissemination and storage protocol for mobile delay-tolerant networks, and observed that the choice of allocation can have a significant impact on the recovery delay under a variety of scenarios.
Third, we consider a real-time streaming system where messages created at regular time intervals at a source are encoded for transmission to a receiver over a packet erasure link; the receiver must subsequently decode each message within a given delay from its creation time. For erasure models containing a limited number of erasures per coding window, per sliding window, and containing erasure bursts whose maximum length is sufficiently short or long, we show that a time-invariant intrasession code asymptotically achieves the maximum message size among all codes that allow decoding under all admissible erasure patterns. For the bursty erasure model, we also show that diagonally interleaved codes derived from specific systematic block codes are asymptotically optimal over all codes in certain cases. We also study an i.i.d. erasure model in which each transmitted packet is erased independently with the same probability; the objective is to maximize the decoding probability for a given message size. We derive an upper bound on the decoding probability for any time-invariant code, and show that the gap between this bound and the performance of a family of time-invariant intrasession codes is small when the message size and packet erasure probability are small. In a simulation study, these codes performed well against a family of random time-invariant convolutional codes under a number of scenarios.
Finally, we consider the joint problems of routing and caching for named data networking. We propose a backpressure-based policy that employs virtual interest packets to make routing and caching decisions. In a packet-level simulation, the proposed policy outperformed a basic protocol that combines shortest-path routing with least-recently-used (LRU) cache replacement.
Resumo:
This work is concerned with a general analysis of wave interactions in periodic structures and particularly periodic thin film dielectric waveguides.
The electromagnetic wave propagation in an asymmetric dielectric waveguide with a periodically perturbed surface is analyzed in terms of a Floquet mode solution. First order approximate analytical expressions for the space harmonics are obtained. The solution is used to analyze various applications: (1) phase matched second harmonic generation in periodically perturbed optical waveguides; (2) grating couplers and thin film filters; (3) Bragg reflection devices; (4) the calculation of the traveling wave interaction impedance for solid state and vacuum tube optical traveling wave amplifiers which utilize periodic dielectric waveguides. Some of these applications are of interest in the field of integrated optics.
A special emphasis is put on the analysis of traveling wave interaction between electrons and electromagnetic waves in various operation regimes. Interactions with a finite temperature electron beam at the collision-dominated, collisionless, and quantum regimes are analyzed in detail assuming a one-dimensional model and longitudinal coupling.
The analysis is used to examine the possibility of solid state traveling wave devices (amplifiers, modulators), and some monolithic structures of these devices are suggested, designed to operate at the submillimeter-far infrared frequency regime. The estimates of attainable traveling wave interaction gain are quite low (on the order of a few inverse centimeters). However, the possibility of attaining net gain with different materials, structures and operation condition is not ruled out.
The developed model is used to discuss the possibility and the theoretical limitations of high frequency (optical) operation of vacuum electron beam tube; and the relation to other electron-electromagnetic wave interaction effects (Smith-Purcell and Cerenkov radiation and the free electron laser) are pointed out. Finally, the case where the periodic structure is the natural crystal lattice is briefly discussed. The longitudinal component of optical space harmonics in the crystal is calculated and found to be of the order of magnitude of the macroscopic wave, and some comments are made on the possibility of coherent bremsstrahlung and distributed feedback lasers in single crystals.
Resumo:
The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable.
Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks.
This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control.
Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations.
We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request.
Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule.
To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks.
Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact.
To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.
Resumo:
We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.
This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.
Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.
Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.