169 resultados para AMPEROMETRIC MEASUREMENTS
Resumo:
A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new type of organic-inorganic composite material was prepared by sol-gel method, and a peroxidase biosensor was fabricated by simply dropping sor-gel-peroxidase mixture onto glassy carbon electrode surface. The sol-gel composite film and enzyme membrane were characterized by Fourier-transform infrared (FT-IR) spectroscopy and EQCM, the electrochemical behavior of the biosensor was studied with potassium hexacyanoferrate(II) as a mediator, and the effects of pH and operating potential were explored for optimum analytical performance by using amperometric method. The response time of the biosensor was about 10 s; the linear range was up to 3.4 mM with a detection limit of 5 x 10(-7) M. The sensor also exhibited high sensitivity (15 mu A mM(-1)) and good long-term stability. In addition, the performance of the biosensor was investigated using flow injection analysis (FIA), and the determination of hydrogen peroxide in real samples was discussed. (C)2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel amperometric glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of glucose oxidase (GOD) on the surface of a horseradish peroxidase (HRP) modified ferrocenecarboxylic acid (FCA) mediated sol-gel derived ceramic carbon electrode. The amperometric detection of glucose was carried out at +0.16 V (vs. SCE) in 0.1 mol/L phosphate buffer solution (pH 6.9) with a linear response range between 8.0x10(-5) and 1.3x10(-3) mol/L of glucose. The biosensor showed a good suppression of interference and a negligible deviation in the amperometric detection.
Resumo:
A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.
Resumo:
A reagentless amperometric hydrogen peroxide biosensor was developed. Horseradish peroxidase (HRP) was immobilized in a novel sol-gel organic-inorganic hybrid matrix that is composed of silica sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP). Tetrathiafulvalene (TTF) was employed as a mediator and could lower the operating potential to -50 mV (versus Ag/AgCl). The sensor achieved 95% of the steady-state current in 15 s. Linear calibration for hydrogen peroxide was up to 1.3 mM with the detection limit of 2.5 x 10(-7)M. The enzyme electrode retained about 94% of its initial activity after 30 days of storage in a dry state at 4 degreesC.
Resumo:
Sensitive end-column amperometric detection has been successfully coupled to capillary electrophoresis for chiral separation of promethazine, with a carbon fiber microdisk electrode as working electrode. Baseline separation and sensitive detection were achieved under optimum conditions: 0.030 M Na2HPO4 and 0.015 M citric acid at pH = 2.50, 1.0 mM beta -CD, 10 kV separation voltage, and detection potential 1.10 V (vs Ag/AgCl). The numbers of theoretical plates were higher than 700000, and the detection limit was 5 x 10(-8) M. On-line treatment of the electrode has also been studied and discussed.
Resumo:
A simple method was proposed for the separation of allopurinol (AP) and its active metabolite oxypurinol (OP) by capillary electrophoresis with end-column amperometric detection. A running buffer composed of 15 rum Na2HPO4/NaH2PO4 at a pH 9.55, electrokinetic injection 7 s at 5 kV, separation voltage at 15 kV and detection potential at 1.20 V were investigated to be the optimal condition for the separation. The method exhibited low detection Emit (S/N = 3) as 1 x 10(-8) mol/l for AP and OP, wide linearity range of 2 x 10(-7) to 1 x 10(-4) mol/l, 1 x 10(-7) to 1 x 10(-4) and high efficiency of 1.2 x 10(5) and 1.8 x 10(5) N/m for AP and OP, respectively. The potential application examined for the method was the determination of the spiked urine sample, which was proved to be sensitive and efficient. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A peroxidase was extracted from Chinese soybean seed coat, and its thermostability and acid-stability were characterized. This peroxidase was immobilized into a self-gelatinizable grafting copolymer of polyvinyl alcohol with 4-vinylpyridine(PVA-g-PVP) to construct an acid-stable hydrogen peroxide biosensor. The effect of pH was studied for optimum analytical performances by amperometric and spectro-photometric methods, also the K-m(app) and the stability of the soybean peroxidase-based biosensor are discussed. At pH 3.0, the soybean peroxidase maintained its bioactivity and the enzyme electrode had a linear range from 0.01 to 6.2 mM with a detection limit of 1.0 x 10(-7) M. In addition, the main characteristics of different hydrogen peroxide sensors were compared.
Resumo:
We have made a cheap microsystem of capillary electrophoresis with a new method, integrating the electrodes, injection channel, separation channel, buffer reservoirs and detection cell on a polymethylmethacrylate (PMMA) chip. Using an integrated micro carbon fiber disk electrode as the working electrode in three electrodes system, 1 x 10(-4) mol/L dopamine(DA) could be detected with end-column amperometric detection. The reproducibility was good. Peak current was 6.73 nA,theoretical plate number was 71300/m and height equivalent of one theoretical plate height was 14.0 mum for 1 x 10(-4) mol/L DA. The limit of detection was 3.6 x 10(-8) mol/L and the linear range was extended from 5 x 10(-7) mol/L to 1 x 10(-4) mol/L for DA. 1 x 10(-4) mol/L catechol (CA) and 5 x 10(-5) mol/L DA were also separated completely with R-s = 10.1.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Determination of aesculin (AL) and aesculetin (AT) by capillary electrophoresis with end-column amperometric detection using a 33 mu m microdisk carbon fiber electrode is described. The HDVs, the effect of pH, buffer concentration, injection voltage, injection time and separation voltage on the peak current response (i(p)) of the analytes and the number of theoretical plates (N) were studied. The method has high sensitivity and good reproducibility. Under the optimum condition - 10 mM, pH 9.00 phosphate buffer, 4 s at 9 kV injection, separation at 15 kV and +1.0 V as the detection potential - low detection limits (S/N = 3) of 0.06 and 0.3 mu M were obtained for AL and AT, respectively. The calibration curve was linear over three orders of magnitude. The relative standard deviations (n = 15) of peak current and migration time were 3.9% and 4.6%, and 0.96% and 0.75% for 15 consecutive injections of 5 mu M AL and AT, respectively. The use of this method for the separation and detection of the two compounds present in the traditional Chinese medicine and human urine samples is also reported. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
End-column amperometric detection of 6-mercaptopurine by capillary zone electrophoresis was described with high resolution and speed. The detection conditions were optimized and the electrochemical behavior was observed. Under the optimal conditions: detection potential of 1.2 V ( vs. Ag/AgCl), operating voltage of 15 kV, sample injection of 3 s at 15 kV and 10 mmol/l Na2HPO4 buffer, the detection limit for 6-MP was as low as 1 x 10(-7) mol/L and the linear range was from 5 x 10(-4) to 5 x 10(-6) mol/L with the relative coefficient of 0.995. The RSD of reproducibility for peak current and migration time was 2.5% and 1.2%, respectively. This method was utilized in assay real sample of human mine and bovine serum albumin containing 6-mercaptopurine.
Resumo:
In this communication we analyse current versus voltage data obtained using one carrier injection at metal/polymer/metal structures, The used polymer is a soluble blue-emitting alternating block copolymer, Our experimental results demonstrate that the electron current is limited by a large amount of traps with exponential energy distribution in the copolymer. The electron ;mobility of 5.1 x 10(-10) cm(2)/V s is directly determined by space-charge-limited current measurements. The electron mobility is at least three orders of magnitude smaller than that for holes in the copolymer. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A new electrochemical cell assembly with the combination of UV and amperometric detector (AD) based on their complementarity was described. A Nafion tubing junction was used to decouple the high voltage from the separation capillary in the rear of on-column UV detector. In this mode, the electroactive and inert compounds could be detected by UV and AD at the same time. Aromatic amines were determined with the UV and the end-column AD detection to evaluate the performances of the cell assembly. Such an improved electrochemical detector could match the capillary with different diameters. By simple adjustment of the screws, the positioning of the working electrode and the detection capillary was easily gained without microscope. It is also very easy to assemble and disassemble the working electrode when needed. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
An acid-stable soybean-peroxidase biosensor was devel oped by immobilizing the enzyme in a sol-gel thin film. Methylene blue was used as a mediator because of its high electron-transfer efficiency. The sol-gel thin film and enzyme membrane were characterized by FT-IR, and the effects of pH, operating potential, and temperature were explored for optimum analytical performance by using the amperometric method. The H2O2 sensor exhibited a fast response (5 s), high sensitivity (27.5 mu A/mM), as well as good thermostability and long-term stability. In addition, the performance of the biosensor was investigated using flow-injection analysis (FIA).