158 resultados para single stage power conversion
Resumo:
In this letter, we have demonstrated continuous-wave single-mode operation of 1.3-mu m InAs-GaAs quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs) with p-type modulation-doped QD active region from 20 degrees C to 60 degrees C. The highest output power of 0.435mW and lowest threshold current of 1.2 mA under single-mode operation are achieved. The temperature-dependent output characteristics of QD-VCSELs are investigated. Single-mode operation with a sidemode suppression ratio of 34 dB is observed at room temperature. The critical size of oxide aperture for single-mode operation is discussed.
Resumo:
We present a comprehensive numerical study on the all-optical wavelength conversion based on the degenerate four-wave-mixing with continuous-wave pumping in the silicon nanowire waveguide. It is well known that the conversion efficiency and the 3-dB bandwidth can be greatly affected by the phase-matching condition. Through proper design of the waveguide cross-section, its dispersion property can be adjusted to satisfy the phase-matching condition and therefore effective wavelength conversion can be achieved in a large wavelength range. Generally, the group velocity dispersion plays a dominant role in the wavelength conversion. However, the fourth-order dispersion takes an important effect on the wavelength conversion when the group velocity dispersion is near the zero-point. Furthermore, the conversion efficiency and the 3-dB bandwidth can also be affected by the interactive length and the initial pump power. Through the numerical simulation, the optimal values for the interactive length and the initial pump power, which are functions of the propagation loss, are obtained to realize the maximum conversion efficiency. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Electron spin relaxation of charged excitons X+ and X2+ are investigated by time-resolved and polarization-resolved photoluminescence spectroscopy. For X+ configuration, the electron spin relaxation shows a typical decay curve induced by hyperfine interaction with nuclei, whereas for X2+ state the electron spin relaxation is affected not only by nuclei but also by electron-hole exchange interaction, leading to a power-law time dependence.
Resumo:
The antibunching and blinking from a single CdSe/ZnS nanocrystal with an emission wavelength of 655 nm were investigated under different excitation powers. The decay process of the photoluminescence from nanocrystal was fitted into a stretched exponential, and the small lifetime and the small stretching exponent under a high excitation power were explained by using nonradiative multi-channel model. The probability of distributions for off-times from photoluminescence intermittence was fitted into the power law, and the power exponents were explained by using a tunneling model. For higher excitation power, the Auger-assisted tunneling model takes effect, where the tunneling rate increases and the observed lifetime decreases. For weak excitation power, the electron directly tunnels between the nanocrystal and trapping state without Auger assistance. The correlation between antibunching and blinking from the same nanocrystal was analyzed.
Resumo:
The vertical-cavity surface-emitting laser(VCSEL) has proved to be a low cost light source with attractive properties such as surface emission, circular and low divergence output beam, and simple integration in two-dimensional array. Many new applications such as in spectroscopy, optical storage, short distance fiber optic interconnects, and in longer distance communication, are continuously arising. Many of these applications require stable and single-mode high output power. Several methods that affect the transverse guiding and/or introduce mode selective loss or gain have been developed. In this study, a method for improving the single mode output power by using metal surface plasmons nanostructure is proposed. Theoretical calculation shows that the outpout power is improved about 50% compared to the result of standard VCSELs.
Resumo:
We report on a VSAL structure fabricated by a 650 nm edge emitting laser diode with an Au-coated facet and an aperture size of 250 x 500 nm. The far field output power can maintain at 1 mW and the power density is 7.5 mW/mu m(2). Some properties of the VSAL including the threshold current change, the red-shift of the spectral position, and the strong relative-intensity-noise are presented. The physical mechanisms responsible for these phenomena are also discussed, which may contribute to the understanding and application of the potential device for near-field optics.
Resumo:
This paper proposes a novel phase-locked loop (PLL) frequency synthesizer using single-electron devices (SEDs) and metal-oxide-semiconductor (MOS) field-effect transistors. The PLL frequency synthesizer mainly consists of a single-electron transistor (SET)/MOS hybrid voltage-controlled oscillator circuit, a single-electron (SE) turnstile/MOS hybrid phase-frequency detector (PFD) circuit and a SE turnstile/MOS hybrid frequency divider. The phase-frequency detection and frequency-division functions are realized by manipulating the single electrons. We propose a SPICE model to describe the behavior of the MOSFET-based SE turnstile. The authors simulate the performance of the PILL block circuits and the whole PLL synthesizer. Simulation results indicated that the circuit can well perform the operation of the PLL frequency synthesizer at room temperature. The PILL synthesizer is very compact. The total number of the transistors is less than 50. The power dissipation of the proposed PLL circuit is less than 3 uW. The authors discuss the effect of fabrication tolerance, the effect of background charge and the SE transfer accuracy on the performance of the PLL circuit. A technique to compensate parameter dispersions of SEDs is proposed.
Resumo:
Passive mode locking of a solid-state Nd:GdVO4 laser is demonstrated. The laser is mode locked by use of a semiconductor absorber mirror (SAM). A low Nd3+ doped Nd:GdVO4 crystal is used to mitigate the thermal lens effect of the laser crystal at a high pump power. The maximum average output power is up to 6.5 W, and the pulse duration is as short as 6.2 ps. The optic-to-optic conversion efficiency is 32.5% and the repetition rate is about 110 MHz.
Resumo:
A stabilized and tunable single-longitudinal-mode erbium-doped fiber ring laser has been proposed and experimentally demonstrated. The laser is structured by combining the compound cavity with a fiber Fabry-Perot tunable filter. An injection-locking technique has been used to stabilize the wavelength and output power of the laser. One of the longitudinal modes is stimulated by the injected continuous wave so that this mode is able to win the competition to stabilize the system. A minimum output power of 0.6 dBm and a signal-to-noise ratio of over 43 dB within the tuning range of 1527-1562 nm can be achieved with the proposed technique. A wavelength variation of less than 0.01 nm, a power fluctuation of less than 0.02 dB, and a short-term linewidth of about 1.4 kHz have also been obtained.
Resumo:
This paper proposes two kinds of novel hybrid voltage controlled ring oscillators (VCO) using a single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. The novel SET/MOS hybrid VCO circuits possess the merits of both the SET circuit and the MOS circuit. The novel VCO circuits have several advantages: wide frequency tuning range, low power dissipation, and large load capability. We use the SPICE compact macro model to describe the SET and simulate the performances of the SET/MOS hybrid VCO circuits by HSPICE simulator. Simulation results demonstrate that the hybrid circuits can operate well as a VCO at room temperature. The oscillation frequency of the VCO circuits could be as high as 1 GHz, with a -71 dBc/Hz phase noise at 1 MHz offset frequency. The power dissipations are lower than 2 uW. We studied the effect of fabrication tolerance, background charge, and operating temperature on the performances of the circuits.
Resumo:
Owing to the considerable virtues of semiconductor lasers for applications, they have become the main optical source for fiber communication systems recently. The behavior of stochastic resonance (SR) in direct-modulated semiconductor laser systems is investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the modulated laser system were calculated using the linear approximation method. We found that the SR always appears in the dependence of the SNR upon the bias current density, and is strongly affected by the cross-correlation coefficient of the carrier and photon noises, the frequency of modulation signal and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated semiconductor laser systems and improve the quality of optical communication. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A Monte Carlo simulation on the basis of quantum trajectory approach is carried out for the measurement dynamics of a single-electron spin resonance. The measured electron, which is confined in either a quantum dot or a defect trap, is tunnel coupled to a side reservoir and continuously monitored by a mesoscopic detector. The simulation not only recovers the observed telegraphic signal of detector current, but also predicts unique features in the output power spectrum which are associated with electron dynamics in different regimes.
Resumo:
GaAsSb/GaAs single quantum wells (SQWs) grown by molecular beam epitaxy are studied by selectively-excited photoluminescence (SEPL) measurement. For the first time, we have simultaneously observed the PL, from both type I and type II transitions in GaAsSb/GaAs heterostructure in the SEPL. The two transitions exhibit different PL, behaviours under different excitation energy. As expected, the peak energy of type I emission remains constant in the whole excitation energy range we used, while type U transition shows a significant blue shift with increasing excitation energy. The observed blue shift is well explained in terms of electron-hole charge separation model at the interface. Time-resolved(TR) PL exhibits more type 11 characteristic of GaAsSb/GaAs QW. Moreover, the results of the excitation-power-dependent PL and TRPL provide more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum-well structures. By combining the experimental results with some simple calculations, we have obtained the strained and unstrained valence band offsets of Q(v) = 1.145 and Q(v)(0) = 0. 76 in our samples, respectively.
Resumo:
GaAsSb/GaAs single quantum wells grown by molecular-beam epitaxy are studied by selectively excited photoluminescence measurements. We have simultaneously observed the photoluminescence (PL) from both type-I and type-II transitions in the samples. The two transitions exhibit different PL behavior under different excitation energies. As expected, the peak energy of the type-I emission remains constant in the entire excitation energy range we used, while the type-II transition shows a significant blueshift with increasing excitation energy. The observed blueshift can be well explained by an electron-hole charge separation model at interface. This result, along with the excitation-power-dependent PL and the measured longer carrier decay time, provides more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum well structures. (C) 2002 American Institute of Physics.
Resumo:
Under short pulse laser excitation, we have observed an extra high-energy photoluminescence (PL) emission from GaNAs/GaAs single quantum wells (QWs). It dominates the PL spectra under high excitation and/or at high temperature. By measuring the PL dependence on both temperature and excitation power and by analyzing the time-resolved PL results, we have attributed the PL peak to the recombination of delocalized excitons in QWs. Furthermore, a competition process between localized and delocalized excitons is observed in the temperature-dependent PL spectra under the short pulse excitation. This competition is believed to be responsible for the temperature-induced S-shaped PL shift often observed in the disordered alloy semiconductor system under continuous-wave excitation. (C) 2001 American Institute of Physics.